These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 35678372)
1. Protein-ligand binding affinity prediction of cyclin-dependent kinase-2 inhibitors by dynamically averaged fragment molecular orbital-based interaction energy. Takaba K; Watanabe C; Tokuhisa A; Akinaga Y; Ma B; Kanada R; Araki M; Okuno Y; Kawashima Y; Moriwaki H; Kawashita N; Honma T; Fukuzawa K; Tanaka S J Comput Chem; 2022 Jul; 43(20):1362-1371. PubMed ID: 35678372 [TBL] [Abstract][Full Text] [Related]
2. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. Takaya D; Niwa H; Mikuni J; Nakamura K; Handa N; Tanaka A; Yokoyama S; Honma T J Mol Graph Model; 2020 Sep; 99():107599. PubMed ID: 32348940 [TBL] [Abstract][Full Text] [Related]
3. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP; Ichihara O; Law RJ; Whittaker M J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630 [TBL] [Abstract][Full Text] [Related]
4. Towards good correlation between fragment molecular orbital interaction energies and experimental IC Sheng Y; Watanabe H; Maruyama K; Watanabe C; Okiyama Y; Honma T; Fukuzawa K; Tanaka S Comput Struct Biotechnol J; 2018; 16():421-434. PubMed ID: 30450166 [TBL] [Abstract][Full Text] [Related]
5. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563 [TBL] [Abstract][Full Text] [Related]
6. Protein-Protein Interaction Modelling with the Fragment Molecular Orbital Method. Tanaka S Methods Mol Biol; 2023; 2552():295-305. PubMed ID: 36346599 [TBL] [Abstract][Full Text] [Related]
7. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method. Otsuka T; Okimoto N; Taiji M J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829 [TBL] [Abstract][Full Text] [Related]
8. A 3D-QSAR Analysis of CDK2 Inhibitors Using FMO Calculations and PLS Regression. Yoshida T; Hirono S Chem Pharm Bull (Tokyo); 2019; 67(6):546-555. PubMed ID: 31155560 [TBL] [Abstract][Full Text] [Related]
9. Taking Water into Account with the Fragment Molecular Orbital Method. Okiyama Y; Fukuzawa K; Komeiji Y; Tanaka S Methods Mol Biol; 2020; 2114():105-122. PubMed ID: 32016889 [TBL] [Abstract][Full Text] [Related]
10. Dynamic Cooperativity of Ligand-Residue Interactions Evaluated with the Fragment Molecular Orbital Method. Tanaka S; Tokutomi S; Hatada R; Okuwaki K; Akisawa K; Fukuzawa K; Komeiji Y; Okiyama Y; Mochizuki Y J Phys Chem B; 2021 Jun; 125(24):6501-6512. PubMed ID: 34124906 [TBL] [Abstract][Full Text] [Related]
11. Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. Watanabe C; Fukuzawa K; Okiyama Y; Tsukamoto T; Kato A; Tanaka S; Mochizuki Y; Nakano T J Mol Graph Model; 2013 Apr; 41():31-42. PubMed ID: 23467020 [TBL] [Abstract][Full Text] [Related]
12. FMODB: The World's First Database of Quantum Mechanical Calculations for Biomacromolecules Based on the Fragment Molecular Orbital Method. Takaya D; Watanabe C; Nagase S; Kamisaka K; Okiyama Y; Moriwaki H; Yuki H; Sato T; Kurita N; Yagi Y; Takagi T; Kawashita N; Takaba K; Ozawa T; Takimoto-Kamimura M; Tanaka S; Fukuzawa K; Honma T J Chem Inf Model; 2021 Feb; 61(2):777-794. PubMed ID: 33511845 [TBL] [Abstract][Full Text] [Related]
13. Binding free energy estimation for protein-ligand complex based on MM-PBSA with various partial charge models. Fu T; Jin Z; Xiu Z; Li G Curr Pharm Des; 2013; 19(12):2293-307. PubMed ID: 23082979 [TBL] [Abstract][Full Text] [Related]
14. Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method. Kurisaki I; Fukuzawa K; Komeiji Y; Mochizuki Y; Nakano T; Imada J; Chmielewski A; Rothstein SM; Watanabe H; Tanaka S Biophys Chem; 2007 Oct; 130(1-2):1-9. PubMed ID: 17656003 [TBL] [Abstract][Full Text] [Related]
15. [Application of fragment molecular orbital (FMO) method to biomacromolecules]. Nakano T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2010; (128):34-8. PubMed ID: 21381393 [TBL] [Abstract][Full Text] [Related]
16. Analyzing Interactions with the Fragment Molecular Orbital Method. Fedorov DG Methods Mol Biol; 2020; 2114():49-73. PubMed ID: 32016886 [TBL] [Abstract][Full Text] [Related]
17. Analyzing GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method. Heifetz A; James T; Southey M; Morao I; Fedorov DG; Bodkin MJ; Townsend-Nicholson A Methods Mol Biol; 2020; 2114():163-175. PubMed ID: 32016893 [TBL] [Abstract][Full Text] [Related]
18. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening. Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058 [TBL] [Abstract][Full Text] [Related]
19. Discovery of a novel SHP2 allosteric inhibitor using virtual screening, FMO calculation, and molecular dynamic simulation. Yuan Z; Zhang M; Chang L; Chen X; Ruan S; Shi S; Zhang Y; Zhu L; Li H; Li S J Mol Model; 2024 Apr; 30(5):131. PubMed ID: 38613643 [TBL] [Abstract][Full Text] [Related]
20. Pair interaction energy decomposition analysis (PIEDA) and experimental approaches for investigating water interactions with hydrophilic and hydrophobic membranes. Maghami M; Abdelrasoul A J Mol Graph Model; 2020 May; 96():107540. PubMed ID: 31986321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]