These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35678375)

  • 1. Nanoscale Melting of 3D Confined Azopolymers through Tunable Thermoplasmonics.
    Kharintsev SS; Kazarian SG
    J Phys Chem Lett; 2022 Jun; 13(23):5351-5357. PubMed ID: 35678375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing two-dimensional temperature profiles using tunable thermoplasmonics.
    Kharintsev SS; Kharitonov AV; Chernykh EA; Alekseev AM; Filippov NA; Kazarian SG
    Nanoscale; 2022 Aug; 14(33):12117-12128. PubMed ID: 35959760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoplasmonics: quantifying plasmonic heating in single nanowires.
    Herzog JB; Knight MW; Natelson D
    Nano Lett; 2014 Feb; 14(2):499-503. PubMed ID: 24382140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing and controlling photothermal heat generation in plasmonic nanostructures.
    Coppens ZJ; Li W; Walker DG; Valentine JG
    Nano Lett; 2013 Mar; 13(3):1023-8. PubMed ID: 23437919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanoscale temperature shaping on a single titanium nitride nanostructure.
    Tamura M; Iida T; Setoura K
    Nanoscale; 2022 Sep; 14(35):12589-12594. PubMed ID: 35968839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid plasmonic Au-TiN vertically aligned nanocomposites: a nanoscale platform towards tunable optical sensing.
    Wang X; Jian J; Diaz-Amaya S; Kumah CE; Lu P; Huang J; Lim DG; Pol VG; Youngblood JP; Boltasseva A; Stanciu LA; O'Carroll DM; Zhang X; Wang H
    Nanoscale Adv; 2019 Mar; 1(3):1045-1054. PubMed ID: 36133204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic heating induced by Au nanoparticles for quasi-ballistic thermal transport in multi-walled carbon nanotubes.
    Xu Y; Zhao X; Li A; Yue Y; Jiang J; Zhang X
    Nanoscale; 2019 Apr; 11(16):7572-7581. PubMed ID: 30951075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and Temporal Nanoscale Plasmonic Heating Quantified by Thermoreflectance.
    Wang D; Koh YR; Kudyshev ZA; Maize K; Kildishev AV; Boltasseva A; Shalaev VM; Shakouri A
    Nano Lett; 2019 Jun; 19(6):3796-3803. PubMed ID: 31067061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching nanoscale temperature fields with high-order plasmonic modes in transition metal nanorods.
    Setoura K; Tamura M; Oshikiri T; Iida T
    RSC Adv; 2023 Nov; 13(49):34489-34496. PubMed ID: 38024990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Far-Field Control of the Thermal Near-Field
    Bhattacharjee U; West CA; Hosseini Jebeli SA; Goldwyn HJ; Kong XT; Hu Z; Beutler EK; Chang WS; Willets KA; Link S; Masiello DJ
    ACS Nano; 2019 Aug; 13(8):9655-9663. PubMed ID: 31361953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological Applications of Thermoplasmonics.
    Ruhoff VT; Arastoo MR; Moreno-Pescador G; Bendix PM
    Nano Lett; 2024 Jan; 24(3):777-789. PubMed ID: 38183300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS
    Yalon E; Aslan B; Smithe KKH; McClellan CJ; Suryavanshi SV; Xiong F; Sood A; Neumann CM; Xu X; Goodson KE; Heinz TF; Pop E
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43013-43020. PubMed ID: 29053241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Biofoam: A Versatile Optically Active Material.
    Tian L; Luan J; Liu KK; Jiang Q; Tadepalli S; Gupta MK; Naik RR; Singamaneni S
    Nano Lett; 2016 Jan; 16(1):609-16. PubMed ID: 26630376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Controlled Multiphase Structuring of Perovskite Crystal Enabled by Thermoplasmonic Metasurface.
    Kharintsev SS; Battalova EI; Mukhametzyanov TA; Pushkarev AP; Scheblykin IG; Makarov SV; Potma EO; Fishman DA
    ACS Nano; 2023 May; 17(10):9235-9244. PubMed ID: 36976247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermometry of Plasmonic Heating by Inelastic Electron Tunneling Spectroscopy (IETS).
    Nachman N; Selzer Y
    Nano Lett; 2017 Sep; 17(9):5855-5861. PubMed ID: 28834435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.