These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 35678507)

  • 1. ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data.
    Osuntoki IG; Harrison A; Dai H; Bao Y; Zabet NR
    Bioinformatics; 2022 Jul; 38(14):3523-3531. PubMed ID: 35678507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Supplement_1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BELMM: Bayesian model selection and random walk smoothing in time-series clustering.
    Sarala O; Pyhäjärvi T; Sillanpää MJ
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37963057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.
    Mifsud B; Martincorena I; Darbo E; Sugar R; Schoenfelder S; Fraser P; Luscombe NM
    PLoS One; 2017; 12(4):e0174744. PubMed ID: 28379994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selfish: discovery of differential chromatin interactions via a self-similarity measure.
    Ardakany AR; Ay F; Lonardi S
    Bioinformatics; 2019 Jul; 35(14):i145-i153. PubMed ID: 31510653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational strategy to adjust for copy number in tumor Hi-C data.
    Wu HJ; Michor F
    Bioinformatics; 2016 Dec; 32(24):3695-3701. PubMed ID: 27531101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
    Lun AT; Smyth GK
    BMC Bioinformatics; 2015 Aug; 16():258. PubMed ID: 26283514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coolpup.py: versatile pile-up analysis of Hi-C data.
    Flyamer IM; Illingworth RS; Bickmore WA
    Bioinformatics; 2020 May; 36(10):2980-2985. PubMed ID: 32003791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of 3D genome architecture by modeling overdispersion of Hi-C data.
    Varoquaux N; Noble WS; Vert JP
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36594573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Micro-C from Hi-C with diffusion models.
    Liu T; Zhu H; Wang Z
    PLoS Comput Biol; 2024 May; 20(5):e1012136. PubMed ID: 38758956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HCMB: A stable and efficient algorithm for processing the normalization of highly sparse Hi-C contact data.
    Wu H; Wang X; Chu M; Li D; Cheng L; Zhou K
    Comput Struct Biotechnol J; 2021; 19():2637-2645. PubMed ID: 34025950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scHiCDiff: detecting differential chromatin interactions in single-cell Hi-C data.
    Liu H; Ma W
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37847655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guiding the design of well-powered Hi-C experiments to detect differential loops.
    Parker SM; Davis ES; Phanstiel DH
    Bioinform Adv; 2023; 3(1):vbad152. PubMed ID: 38023330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posterior inference of Hi-C contact frequency through sampling.
    Zhang Y; Cameron CJF; Blanchette M
    Front Bioinform; 2023; 3():1285828. PubMed ID: 38455089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ENT3C: an entropy-based similarity measure for Hi-C and micro-C derived contact matrices.
    Lainscsek X; Taher L
    NAR Genom Bioinform; 2024 Sep; 6(3):lqae076. PubMed ID: 38962256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective modeling of the chromatin structure by coarse-grained methods.
    Tuszynska I; Bednarz P; Wilczynski B
    J Biomol Struct Dyn; 2024 Jan; ():1-9. PubMed ID: 38165232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. StripeDiff: Model-based algorithm for differential analysis of chromatin stripe.
    Gupta K; Wang G; Zhang S; Gao X; Zheng R; Zhang Y; Meng Q; Zhang L; Cao Q; Chen K
    Sci Adv; 2022 Dec; 8(49):eabk2246. PubMed ID: 36475785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SYBA: Bayesian estimation of synthetic accessibility of organic compounds.
    Voršilák M; Kolář M; Čmelo I; Svozil D
    J Cheminform; 2020 May; 12(1):35. PubMed ID: 33431015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.