These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 35678711)
81. Effect of a novel neurotensin analog, NT69L, on nicotine-induced alterations in monoamine levels in rat brain. Liang Y; Boules M; Shaw AM; Williams K; Fredrickson P; Richelson E Brain Res; 2008 Sep; 1231():6-15. PubMed ID: 18687313 [TBL] [Abstract][Full Text] [Related]
82. A combination of mirtazapine and milnacipran augments the extracellular levels of monoamines in the rat brain. Yamauchi M; Imanishi T; Koyama T Neuropharmacology; 2012 Jun; 62(7):2278-87. PubMed ID: 22342987 [TBL] [Abstract][Full Text] [Related]
83. Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. Thomsen WJ; Grottick AJ; Menzaghi F; Reyes-Saldana H; Espitia S; Yuskin D; Whelan K; Martin M; Morgan M; Chen W; Al-Shamma H; Smith B; Chalmers D; Behan D J Pharmacol Exp Ther; 2008 May; 325(2):577-87. PubMed ID: 18252809 [TBL] [Abstract][Full Text] [Related]
84. Changes in activities of dopamine and serotonin systems in the frontal cortex underlie poor choice accuracy and impulsivity of rats in an attention task. Puumala T; Sirviö J Neuroscience; 1998 Mar; 83(2):489-99. PubMed ID: 9460757 [TBL] [Abstract][Full Text] [Related]
85. Sertraline, 1S,4S-N-methyl-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphthylamine, a new uptake inhibitor with selectivity for serotonin. Koe BK; Weissman A; Welch WM; Browne RG J Pharmacol Exp Ther; 1983 Sep; 226(3):686-700. PubMed ID: 6310078 [TBL] [Abstract][Full Text] [Related]
86. Effect of microwave irradiation on monoamine metabolism in dissected rat brain. Ishikawa K; Shibanoki S; Saito S; McGaugh JL Brain Res; 1982 May; 240(1):158-61. PubMed ID: 7093715 [TBL] [Abstract][Full Text] [Related]
87. Monitoring Dopamine Responses to Potassium Ion and Nomifensine by in Vivo Microdialysis with Online Liquid Chromatography at One-Minute Resolution. Ngo KT; Varner EL; Michael AC; Weber SG ACS Chem Neurosci; 2017 Feb; 8(2):329-338. PubMed ID: 28094974 [TBL] [Abstract][Full Text] [Related]
88. Real-time monitoring of serotonin with highly selective aptamer-functionalized conducting polymer nanohybrids. Lim SG; Seo SE; Park SJ; Kim J; Kim Y; Kim KH; An JE; Kwon OS Nano Converg; 2022 Jul; 9(1):31. PubMed ID: 35829851 [TBL] [Abstract][Full Text] [Related]
89. A neural probe for concurrent real-time measurement of multiple neurochemicals with electrophysiology in multiple brain regions in vivo. Chae U; Woo J; Cho Y; Han JK; Yang SH; Yang E; Shin H; Kim H; Yu HY; Lee CJ; Cho IJ Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2219231120. PubMed ID: 37399389 [TBL] [Abstract][Full Text] [Related]
90. Recent Advances in In Vivo Neurochemical Monitoring. Tan C; Robbins EM; Wu B; Cui XT Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33670703 [TBL] [Abstract][Full Text] [Related]
91. Plug-and-play fiber-optic sensors based on engineered cells for neurochemical monitoring at high specificity in freely moving animals. Zhou B; Fan K; Guo J; Feng J; Yang C; Li Y; Shi S; Kong L Sci Adv; 2023 Jun; 9(22):eadg0218. PubMed ID: 37267364 [TBL] [Abstract][Full Text] [Related]
92. Wireless, battery-free push-pull microsystem for membrane-free neurochemical sampling in freely moving animals. Wu G; Heck I; Zhang N; Phaup G; Zhang X; Wu Y; Stalla DE; Weng Z; Sun H; Li H; Zhang Z; Ding S; Li DP; Zhang Y Sci Adv; 2022 Feb; 8(8):eabn2277. PubMed ID: 35196090 [TBL] [Abstract][Full Text] [Related]
93. Advanced Nanomaterials-Based Electrochemical Biosensors for Catecholamines Detection: Challenges and Trends. Fredj Z; Sawan M Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831978 [TBL] [Abstract][Full Text] [Related]
94. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. Sun M; Wang S; Liang Y; Wang C; Zhang Y; Liu H; Zhang Y; Han L Nanomicro Lett; 2024 Oct; 17(1):34. PubMed ID: 39373823 [TBL] [Abstract][Full Text] [Related]
95. Recent Progress in Biosensors for Depression Monitoring-Advancing Personalized Treatment. Yin J; Jia X; Li H; Zhao B; Yang Y; Ren TL Biosensors (Basel); 2024 Aug; 14(9):. PubMed ID: 39329797 [TBL] [Abstract][Full Text] [Related]
97. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring. Wang J; Chen D; Huang W; Yang N; Yuan Q; Yang Y Exploration (Beijing); 2023 Jun; 3(3):20210027. PubMed ID: 37933385 [TBL] [Abstract][Full Text] [Related]
98. Long-Term Wu G; Zhang ET; Qiang Y; Esmonde C; Chen X; Wei Z; Song Y; Zhang X; Schneider MJ; Li H; Sun H; Weng Z; Santaniello S; He J; Lai RY; Li Y; Bruchas MR; Zhang Y bioRxiv; 2023 Oct; ():. PubMed ID: 37905115 [TBL] [Abstract][Full Text] [Related]
99. Covalent functionalisation controlled by molecular design for the aptameric recognition of serotonin in graphene-based field-effect transistors. Wetzl C; Brosel-Oliu S; Carini M; Di Silvio D; Illa X; Villa R; Guimera A; Prats-Alfonso E; Prato M; Criado A Nanoscale; 2023 Oct; 15(41):16650-16657. PubMed ID: 37789811 [TBL] [Abstract][Full Text] [Related]