These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35678712)

  • 1. Associational resistance through intercropping reduces yield losses to soil-borne pests and diseases.
    Chadfield VGA; Hartley SE; Redeker KR
    New Phytol; 2022 Sep; 235(6):2393-2405. PubMed ID: 35678712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid transgenerational adaptation in response to intercropping reduces competition.
    Stefan L; Engbersen N; Schöb C
    Elife; 2022 Sep; 11():. PubMed ID: 36097813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercropping enhances soil carbon and nitrogen.
    Cong WF; Hoffland E; Li L; Six J; Sun JH; Bao XG; Zhang FS; Van Der Werf W
    Glob Chang Biol; 2015 Apr; 21(4):1715-26. PubMed ID: 25216023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Belowground Interactions Impact the Soil Bacterial Community, Soil Fertility, and Crop Yield in Maize/Peanut Intercropping Systems.
    Li Q; Chen J; Wu L; Luo X; Li N; Arafat Y; Lin S; Lin W
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29470429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor.
    Zhou L; Wang Y; Xie Z; Zhang Y; Malhi SS; Guo Z; Qiu Y; Wang L
    J Basic Microbiol; 2018 Oct; 58(10):892-901. PubMed ID: 30101457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits and Risks of Intercropping for Crop Resilience and Pest Management.
    Huss CP; Holmes KD; Blubaugh CK
    J Econ Entomol; 2022 Oct; 115(5):1350-1362. PubMed ID: 35452091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.
    Brooker RW; Bennett AE; Cong WF; Daniell TJ; George TS; Hallett PD; Hawes C; Iannetta PP; Jones HG; Karley AJ; Li L; McKenzie BM; Pakeman RJ; Paterson E; Schöb C; Shen J; Squire G; Watson CA; Zhang C; Zhang F; Zhang J; White PJ
    New Phytol; 2015 Apr; 206(1):107-117. PubMed ID: 25866856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot.
    Gao X; Wu M; Xu R; Wang X; Pan R; Kim HJ; Liao H
    PLoS One; 2014; 9(5):e95031. PubMed ID: 24810161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical modelling for sustainable aphid control in agriculture via intercropping.
    Allen-Perkins A; Estrada E
    Proc Math Phys Eng Sci; 2019 Jun; 475(2226):20190136. PubMed ID: 31293361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crop Rotation and Intercropping Strategies for Weed Management.
    Liebman M; Dyck E
    Ecol Appl; 1993 Feb; 3(1):92-122. PubMed ID: 27759234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of Bacterial Community Diversity in Rhizosphere Soil of Sole-Cropped versus Intercropped Wheat Field after Harvest.
    Yang Z; Yang W; Li S; Hao J; Su Z; Sun M; Gao Z; Zhang C
    PLoS One; 2016; 11(3):e0150618. PubMed ID: 26934044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.
    Singh A; Weisser WW; Hanna R; Houmgny R; Zytynska SE
    Pest Manag Sci; 2017 Oct; 73(10):2017-2027. PubMed ID: 28585376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop-weed relationships are context-dependent and cannot fully explain the positive effects of intercropping on yield.
    Stefan L; Engbersen N; Schöb C
    Ecol Appl; 2021 Jun; 31(4):e02311. PubMed ID: 33630392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of yam/leguminous crops intercropping on soil chemical and biological properties of yam field.
    Zhang YM; Wang QZ; Sun ZM; Niu SB; Liu J; Ma WQ; Yang XZ
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):4071-4079. PubMed ID: 30584735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests.
    Poelman EH; Bourne ME; Croijmans L; Cuny MAC; Delamore Z; Joachim G; Kalisvaart SN; Kamps BBJ; Longuemare M; Suijkerbuijk HAC; Zhang NX
    J Chem Ecol; 2023 Jun; 49(5-6):218-229. PubMed ID: 37138167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yield advantage and nitrogen fate in an additive maize-soybean relay intercropping system.
    Chen P; Song C; Liu XM; Zhou L; Yang H; Zhang X; Zhou Y; Du Q; Pang T; Fu ZD; Wang XC; Liu WG; Yang F; Shu K; Du J; Liu J; Yang W; Yong T
    Sci Total Environ; 2019 Mar; 657():987-999. PubMed ID: 30677964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intercropping competition between apple trees and crops in agroforestry systems on the Loess Plateau of China.
    Gao L; Xu H; Bi H; Xi W; Bao B; Wang X; Bi C; Chang Y
    PLoS One; 2013; 8(7):e70739. PubMed ID: 23936246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system.
    Yang M; Zhang Y; Qi L; Mei X; Liao J; Ding X; Deng W; Fan L; He X; Vivanco JM; Li C; Zhu Y; Zhu S
    PLoS One; 2014; 9(12):e115052. PubMed ID: 25551554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].
    Xia HY; Xue YF; Meng WW; Yu LM; Liu LY; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1263-70. PubMed ID: 26259472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syndromes of production in intercropping impact yield gains.
    Li C; Hoffland E; Kuyper TW; Yu Y; Zhang C; Li H; Zhang F; van der Werf W
    Nat Plants; 2020 Jun; 6(6):653-660. PubMed ID: 32483328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.