These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 35678715)

  • 1. Recapitulating Tumor Hypoxia in a Cleanroom-Free, Liquid-Pinning-Based Microfluidic Tumor Model.
    Oh JM; Begum HM; Liu YL; Ren Y; Shen K
    ACS Biomater Sci Eng; 2022 Jul; 8(7):3107-3121. PubMed ID: 35678715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleanroom-Free Microfluidic Device for Natural Induction of Hypoxia in 2D and 3D Tumor Models.
    Oh JM; Shen K
    Methods Mol Biol; 2024; 2755():227-247. PubMed ID: 38319582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments.
    Ando Y; Ta HP; Yen DP; Lee SS; Raola S; Shen K
    Sci Rep; 2017 Nov; 7(1):15233. PubMed ID: 29123197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Device with an Oxygen Gradient Generator for Investigating Effects of Specific Hypoxia Conditions on Responses of Tumor Cells.
    Ding L; Sun D; Wang Z; Gao T; Wei J; Li X; Chen L; Liu B; Li J; Liu C
    Langmuir; 2024 Sep; 40(37):19316-19323. PubMed ID: 39217623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Vascularized Hypoxic Tumor Model for Therapeutic Assessment.
    Ando Y; Oh JM; Zhao W; Tran M; Shen K
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment.
    Funamoto K; Zervantonakis IK; Liu Y; Ochs CJ; Kim C; Kamm RD
    Lab Chip; 2012 Nov; 12(22):4855-63. PubMed ID: 23023115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations.
    Ayuso JM; Gillette A; Lugo-Cintrón K; Acevedo-Acevedo S; Gomez I; Morgan M; Heaster T; Wisinski KB; Palecek SP; Skala MC; Beebe DJ
    EBioMedicine; 2018 Nov; 37():144-157. PubMed ID: 30482722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavior of breast cancer cells under oxygen concentration gradients in a microfluidic device.
    Aratake S; Kawahara N; Funamoto K
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Switching of Tumor Cells under Hypoxic Conditions in a Tumor-on-a-chip Model.
    Palacio-Castañeda V; Kooijman L; Venzac B; Verdurmen WPR; Le Gac S
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device for recreating a tumor microenvironment in vitro.
    Toley BJ; Ganz DE; Walsh CL; Forbes NS
    J Vis Exp; 2011 Nov; (57):. PubMed ID: 22126742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic device to attain high spatial and temporal control of oxygen.
    Lam SF; Shirure VS; Chu YE; Soetikno AG; George SC
    PLoS One; 2018; 13(12):e0209574. PubMed ID: 30571786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia.
    Grist SM; Nasseri SS; Laplatine L; Schmok JC; Yao D; Hua J; Chrostowski L; Cheung KC
    Sci Rep; 2019 Nov; 9(1):17782. PubMed ID: 31780697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids.
    Berger Fridman I; Ugolini GS; VanDelinder V; Cohen S; Konry T
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33440359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension.
    Koens R; Tabata Y; Serrano JC; Aratake S; Yoshino D; Kamm RD; Funamoto K
    APL Bioeng; 2020 Mar; 4(1):016106. PubMed ID: 32161836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device.
    Germain T; Ansari M; Pappas D
    Anal Chim Acta; 2016 Sep; 936():179-84. PubMed ID: 27566353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to study the tumor microenvironment under controlled oxygen conditions.
    Byrne MB; Leslie MT; Gaskins HR; Kenis PJA
    Trends Biotechnol; 2014 Nov; 32(11):556-563. PubMed ID: 25282035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable Microfluidic Channel with Pin-discretized Sidewalls.
    Futai N; Fujita K; Ikuta W
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29708554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.