These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Time-course of V̇o Gildea N; McDermott A; Rocha J; O'Shea D; Green S; Egaña M J Appl Physiol (1985); 2021 Jun; 130(6):1646-1659. PubMed ID: 33792400 [TBL] [Abstract][Full Text] [Related]
3. Time course of changes in V̇o Gildea N; McDermott A; Rocha J; O'Shea D; Green S; Egaña M Am J Physiol Regul Integr Comp Physiol; 2021 May; 320(5):R683-R696. PubMed ID: 33624548 [TBL] [Abstract][Full Text] [Related]
4. Influence of priming exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity cycling in type 2 diabetes. Rocha J; Gildea N; O'Shea D; Green S; Egaña M J Appl Physiol (1985); 2019 Oct; 127(4):1140-1149. PubMed ID: 31414958 [TBL] [Abstract][Full Text] [Related]
5. Short-term and Long-term Feasibility, Safety, and Efficacy of High-Intensity Interval Training in Cardiac Rehabilitation: The FITR Heart Study Randomized Clinical Trial. Taylor JL; Holland DJ; Keating SE; Leveritt MD; Gomersall SR; Rowlands AV; Bailey TG; Coombes JS JAMA Cardiol; 2020 Dec; 5(12):1382-1389. PubMed ID: 32876655 [TBL] [Abstract][Full Text] [Related]
6. A Comparative Study of Health Efficacy Indicators in Subjects with T2DM Applying Power Cycling to 12 Weeks of Low-Volume High-Intensity Interval Training and Moderate-Intensity Continuous Training. Li J; Cheng W; Ma H J Diabetes Res; 2022; 2022():9273830. PubMed ID: 35071605 [TBL] [Abstract][Full Text] [Related]
7. Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes. Gildea N; Rocha J; O'Shea D; Green S; Egaña M Eur J Appl Physiol; 2021 Feb; 121(2):409-423. PubMed ID: 33084929 [TBL] [Abstract][Full Text] [Related]
9. Similar pattern of change in V̇o McLay KM; Murias JM; Paterson DH Am J Physiol Regul Integr Comp Physiol; 2017 Apr; 312(4):R467-R476. PubMed ID: 28122720 [TBL] [Abstract][Full Text] [Related]
10. Effects of high-intensity interval training and moderate-intensity continuous training on endothelial function and cardiometabolic risk markers in obese adults. Sawyer BJ; Tucker WJ; Bhammar DM; Ryder JR; Sweazea KL; Gaesser GA J Appl Physiol (1985); 2016 Jul; 121(1):279-88. PubMed ID: 27255523 [TBL] [Abstract][Full Text] [Related]
11. Effect of short-term high-intensity interval training vs. continuous training on O2 uptake kinetics, muscle deoxygenation, and exercise performance. McKay BR; Paterson DH; Kowalchuk JM J Appl Physiol (1985); 2009 Jul; 107(1):128-38. PubMed ID: 19443744 [TBL] [Abstract][Full Text] [Related]
12. Speeding of VO2 kinetics with endurance training in old and young men is associated with improved matching of local O2 delivery to muscle O2 utilization. Murias JM; Kowalchuk JM; Paterson DH J Appl Physiol (1985); 2010 Apr; 108(4):913-22. PubMed ID: 20150562 [TBL] [Abstract][Full Text] [Related]
13. Aerobic capacity and [Formula: see text] kinetics adaptive responses to short-term high-intensity interval training and detraining in untrained females. Liu Y; Zhou A; Li F; Yue T; Xia Y; Yao Y; Zhou X; Zhang Y; Wang Y Eur J Appl Physiol; 2023 Aug; 123(8):1685-1699. PubMed ID: 36995431 [TBL] [Abstract][Full Text] [Related]
14. Impact of high-intensity interval training and moderate-intensity continuous training on resting and postexercise cardiac troponin T concentration. Nie J; Zhang H; Kong Z; George K; Little JP; Tong TK; Li F; Shi Q Exp Physiol; 2018 Mar; 103(3):370-380. PubMed ID: 29247498 [TBL] [Abstract][Full Text] [Related]
15. Left ventricular vascular and metabolic adaptations to high-intensity interval and moderate intensity continuous training: a randomized trial in healthy middle-aged men. Eskelinen JJ; Heinonen I; Löyttyniemi E; Hakala J; Heiskanen MA; Motiani KK; Virtanen K; Pärkkä JP; Knuuti J; Hannukainen JC; Kalliokoski KK J Physiol; 2016 Dec; 594(23):7127-7140. PubMed ID: 27500951 [TBL] [Abstract][Full Text] [Related]
16. Is isoenergetic high-intensity interval exercise superior to moderate-intensity continuous exercise for cardiometabolic risk factors in individuals with type 2 diabetes mellitus? A single-blinded randomized controlled study. Findikoglu G; Altinkapak A; Yaylali GF Eur J Sport Sci; 2023 Oct; 23(10):2086-2097. PubMed ID: 36622777 [TBL] [Abstract][Full Text] [Related]
17. Effect of low-volume combined aerobic and resistance high-intensity interval training on vascular health in people with type 2 diabetes: a randomised controlled trial. Cox ER; Gajanand T; Keating SE; Hordern MD; Burton NW; Green DJ; Ramos JS; Ramos MV; Fassett RG; Cox SV; Coombes JS; Bailey TG Eur J Appl Physiol; 2024 Sep; 124(9):2819-2833. PubMed ID: 38695912 [TBL] [Abstract][Full Text] [Related]
18. High-intensity interval training speeds the adjustment of pulmonary O2 uptake, but not muscle deoxygenation, during moderate-intensity exercise transitions initiated from low and elevated baseline metabolic rates. Williams AM; Paterson DH; Kowalchuk JM J Appl Physiol (1985); 2013 Jun; 114(11):1550-62. PubMed ID: 23519229 [TBL] [Abstract][Full Text] [Related]
19. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. Goulding RP; Roche DM; Scott SN; Koga S; Weston PJ; Marwood S J Appl Physiol (1985); 2020 May; 128(5):1299-1309. PubMed ID: 32213117 [TBL] [Abstract][Full Text] [Related]
20. The effect of low-volume high-intensity interval training on cardiovascular health outcomes in type 2 diabetes: A randomised controlled trial. Way KL; Sabag A; Sultana RN; Baker MK; Keating SE; Lanting S; Gerofi J; Chuter VH; Caterson ID; Twigg SM; Johnson NA Int J Cardiol; 2020 Dec; 320():148-154. PubMed ID: 32598997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]