These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 35678753)
1. De novo centromere formation in pericentromeric region of rice chromosome 8. Xue C; Liu G; Sun S; Liu X; Guo R; Cheng Z; Yu H; Gu M; Liu K; Zhou Y; Zhang T; Gong Z Plant J; 2022 Aug; 111(3):859-871. PubMed ID: 35678753 [TBL] [Abstract][Full Text] [Related]
2. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Zhang T; Talbert PB; Zhang W; Wu Y; Yang Z; Henikoff JG; Henikoff S; Jiang J Proc Natl Acad Sci U S A; 2013 Dec; 110(50):E4875-83. PubMed ID: 24191062 [TBL] [Abstract][Full Text] [Related]
3. A novel translocation event leads to a recombinant stable chromosome with interrupted centromeric domains in rice. Wang G; Li H; Cheng Z; Jin W Chromosoma; 2013 Aug; 122(4):295-303. PubMed ID: 23625520 [TBL] [Abstract][Full Text] [Related]
4. Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3. Zhao H; Zeng Z; Koo DH; Gill BS; Birchler JA; Jiang J Chromosome Res; 2017 Oct; 25(3-4):299-311. PubMed ID: 28831743 [TBL] [Abstract][Full Text] [Related]
5. Sequencing of a rice centromere uncovers active genes. Nagaki K; Cheng Z; Ouyang S; Talbert PB; Kim M; Jones KM; Henikoff S; Buell CR; Jiang J Nat Genet; 2004 Feb; 36(2):138-45. PubMed ID: 14716315 [TBL] [Abstract][Full Text] [Related]
6. Conservation and purifying selection of transcribed genes located in a rice centromere. Fan C; Walling JG; Zhang J; Hirsch CD; Jiang J; Wing RA Plant Cell; 2011 Aug; 23(8):2821-30. PubMed ID: 21856794 [TBL] [Abstract][Full Text] [Related]
7. Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Lee HR; Zhang W; Langdon T; Jin W; Yan H; Cheng Z; Jiang J Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11793-8. PubMed ID: 16040802 [TBL] [Abstract][Full Text] [Related]
8. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Gong Z; Wu Y; Koblízková A; Torres GA; Wang K; Iovene M; Neumann P; Zhang W; Novák P; Buell CR; Macas J; Jiang J Plant Cell; 2012 Sep; 24(9):3559-74. PubMed ID: 22968715 [TBL] [Abstract][Full Text] [Related]
9. A molecular-cytogenetic method for locating genes to pericentromeric regions facilitates a genomewide comparison of synteny between the centromeric regions of wheat and rice. Qi L; Friebe B; Zhang P; Gill BS Genetics; 2009 Dec; 183(4):1235-47. PubMed ID: 19797045 [TBL] [Abstract][Full Text] [Related]
10. Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation. Gong Z; Yu H; Huang J; Yi C; Gu M Chromosome Res; 2009; 17(7):863-72. PubMed ID: 19757105 [TBL] [Abstract][Full Text] [Related]
11. Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Ma J; Bennetzen JL Proc Natl Acad Sci U S A; 2006 Jan; 103(2):383-8. PubMed ID: 16381819 [TBL] [Abstract][Full Text] [Related]
12. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Yan H; Ito H; Nobuta K; Ouyang S; Jin W; Tian S; Lu C; Venu RC; Wang GL; Green PJ; Wing RA; Buell CR; Meyers BC; Jiang J Plant Cell; 2006 Sep; 18(9):2123-33. PubMed ID: 16877494 [TBL] [Abstract][Full Text] [Related]
13. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Ma J; Jackson SA Genome Res; 2006 Feb; 16(2):251-9. PubMed ID: 16354755 [TBL] [Abstract][Full Text] [Related]
14. Formation of novel CENP-A domains on tandem repetitive DNA and across chromosome breakpoints on human chromosome 8q21 neocentromeres. Hasson D; Alonso A; Cheung F; Tepperberg JH; Papenhausen PR; Engelen JJ; Warburton PE Chromosoma; 2011 Dec; 120(6):621-32. PubMed ID: 21826412 [TBL] [Abstract][Full Text] [Related]
15. A functional centromere lacking CentO sequences in a newly formed ring chromosome in rice. Yang R; Li Y; Su Y; Shen Y; Tang D; Luo Q; Cheng Z J Genet Genomics; 2016 Dec; 43(12):694-701. PubMed ID: 27965027 [TBL] [Abstract][Full Text] [Related]
16. Global sequence characterization of rice centromeric satellite based on oligomer frequency analysis in large-scale sequencing data. Macas J; Neumann P; Novák P; Jiang J Bioinformatics; 2010 Sep; 26(17):2101-8. PubMed ID: 20616383 [TBL] [Abstract][Full Text] [Related]
17. The compact Brachypodium genome conserves centromeric regions of a common ancestor with wheat and rice. Qi L; Friebe B; Wu J; Gu Y; Qian C; Gill BS Funct Integr Genomics; 2010 Nov; 10(4):477-92. PubMed ID: 20842403 [TBL] [Abstract][Full Text] [Related]
18. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Zhang W; Yi C; Bao W; Liu B; Cui J; Yu H; Cao X; Gu M; Liu M; Cheng Z Plant Physiol; 2005 Sep; 139(1):306-15. PubMed ID: 16113220 [TBL] [Abstract][Full Text] [Related]
19. Euchromatic subdomains in rice centromeres are associated with genes and transcription. Wu Y; Kikuchi S; Yan H; Zhang W; Rosenbaum H; Iniguez AL; Jiang J Plant Cell; 2011 Nov; 23(11):4054-64. PubMed ID: 22080597 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure. Wu J; Fujisawa M; Tian Z; Yamagata H; Kamiya K; Shibata M; Hosokawa S; Ito Y; Hamada M; Katagiri S; Kurita K; Yamamoto M; Kikuta A; Machita K; Karasawa W; Kanamori H; Namiki N; Mizuno H; Ma J; Sasaki T; Matsumoto T Plant J; 2009 Dec; 60(5):805-19. PubMed ID: 19702669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]