BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 35678906)

  • 1. Renal water transport in health and disease.
    Feraille E; Sassi A; Olivier V; Arnoux G; Martin PY
    Pflugers Arch; 2022 Aug; 474(8):841-852. PubMed ID: 35678906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluconazole Increases Osmotic Water Transport in Renal Collecting Duct through Effects on Aquaporin-2 Trafficking.
    Vukićević T; Hinze C; Baltzer S; Himmerkus N; Quintanova C; Zühlke K; Compton F; Ahlborn R; Dema A; Eichhorst J; Wiesner B; Bleich M; Schmidt-Ott KM; Klussmann E
    J Am Soc Nephrol; 2019 May; 30(5):795-810. PubMed ID: 30988011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aquaporin 2 mutations in nephrogenic diabetes insipidus.
    Loonen AJ; Knoers NV; van Os CH; Deen PM
    Semin Nephrol; 2008 May; 28(3):252-65. PubMed ID: 18519086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. V2R mutations and nephrogenic diabetes insipidus.
    Bichet DG
    Prog Mol Biol Transl Sci; 2009; 89():15-29. PubMed ID: 20374732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hereditary Nephrogenic Diabetes Insipidus: Pathophysiology and Possible Treatment. An Update.
    Milano S; Carmosino M; Gerbino A; Svelto M; Procino G
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29125546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P2Y12 Receptor Localizes in the Renal Collecting Duct and Its Blockade Augments Arginine Vasopressin Action and Alleviates Nephrogenic Diabetes Insipidus.
    Zhang Y; Peti-Peterdi J; Müller CE; Carlson NG; Baqi Y; Strasburg DL; Heiney KM; Villanueva K; Kohan DE; Kishore BK
    J Am Soc Nephrol; 2015 Dec; 26(12):2978-87. PubMed ID: 25855780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The clinical physiology of water metabolism. Part II: Renal mechanisms for urinary concentration; diabetes insipidus.
    Weitzman RE; Kleeman CR
    West J Med; 1979 Dec; 131(6):486-515. PubMed ID: 545867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Nephrogenic diabetes insipidus].
    Velásquez-Jones L; Medeiros-Domingo M
    Bol Med Hosp Infant Mex; 2014; 71(6):332-338. PubMed ID: 29421628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrin-linked kinase regulates tubular aquaporin-2 content and intracellular location: a link between the extracellular matrix and water reabsorption.
    Cano-Peñalver JL; Griera M; Serrano I; Rodríguez-Puyol D; Dedhar S; de Frutos S; Rodríguez-Puyol M
    FASEB J; 2014 Aug; 28(8):3645-59. PubMed ID: 24784577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Nephrogenic diabetes insipidus].
    Evrard A; Lefebvre J; Vantyghem M
    Ann Endocrinol (Paris); 1999 Dec; 60(6):457-64. PubMed ID: 10617799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of aquaporin-2 trafficking.
    Nedvetsky PI; Tamma G; Beulshausen S; Valenti G; Rosenthal W; Klussmann E
    Handb Exp Pharmacol; 2009; (190):133-57. PubMed ID: 19096775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vasopressin type-2 receptor and aquaporin-2 water channel mutants in nephrogenic diabetes insipidus.
    Deen PM; Knoers NV
    Am J Med Sci; 1998 Nov; 316(5):300-9. PubMed ID: 9822112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.
    Christensen S; Kusano E; Yusufi AN; Murayama N; Dousa TP
    J Clin Invest; 1985 Jun; 75(6):1869-79. PubMed ID: 2989335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the understanding of water metabolism in heart failure.
    Schrier RW; Martin PY
    Adv Exp Med Biol; 1998; 449():415-26. PubMed ID: 10026833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Routing of the aquaporin-2 water channel in health and disease.
    Deen PM; van Balkom BW; Kamsteeg EJ
    Eur J Cell Biol; 2000 Aug; 79(8):523-30. PubMed ID: 11001488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nephrogenic Diabetes Insipidus.
    Balla A; Hunyady L
    Exp Suppl; 2019; 111():317-339. PubMed ID: 31588538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of aquaporins in water balance disorders.
    Knepper MA; Verbalis JG; Nielsen S
    Curr Opin Nephrol Hypertens; 1997 Jul; 6(4):367-71. PubMed ID: 9263686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquaporin-2 water channel mutations causing nephrogenic diabetes insipidus.
    van Os CH; Deen PM
    Proc Assoc Am Physicians; 1998; 110(5):395-400. PubMed ID: 9756089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a dominant negative PKA mutation in the kidney elicits a diabetes insipidus phenotype.
    Gilbert ML; Yang L; Su T; McKnight GS
    Am J Physiol Renal Physiol; 2015 Mar; 308(6):F627-38. PubMed ID: 25587115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Updates and Perspectives on Aquaporin-2 and Water Balance Disorders.
    Noda Y; Sasaki S
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.