These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35678971)

  • 1. Study on prediction in far-field aerodynamic noise of long-marshalling high-speed train.
    Qin D; Li T; Dai Z; Zhang J
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86580-86594. PubMed ID: 35678971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics analysis of near-field and far-field aerodynamic noise around high-speed railway bridge.
    Cao Y; Li Z; Ji W; Ma M
    Environ Sci Pollut Res Int; 2021 Jun; 28(23):29467-29483. PubMed ID: 33559822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical calculation of boundary layers and wake characteristics of high-speed trains with different lengths.
    Jia L; Zhou D; Niu J
    PLoS One; 2017; 12(12):e0189798. PubMed ID: 29261758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of flow field and aerodynamic noise of marine gas turbine air intake system.
    Luan Y; Yan L; Sun T; Zunino P
    J Acoust Soc Am; 2023 Aug; 154(2):886-901. PubMed ID: 37578193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of non-fully enclosed windshield on aerodynamic and acoustic behaviors of high-speed train.
    Qin D; Li T; Zhou P; Zhang J
    Environ Sci Pollut Res Int; 2023 May; 30(25):67804-67819. PubMed ID: 37118394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of dipole sound source around high speed trains.
    Takaishi T; Sagawa A; Nagakura K; Maeda T
    J Acoust Soc Am; 2002 Jun; 111(6):2601-8. PubMed ID: 12083191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Simulation and Analysis of Turbulent Characteristics near Wake Area of Vacuum Tube EMU.
    Cui H; Chen G; Guan Y; Zhao H
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of wind turbine aerodynamic noise in the time domain.
    Lee S; Lee S; Lee S
    J Acoust Soc Am; 2013 Feb; 133(2):EL94-100. PubMed ID: 23363200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical Investigation of Aerodynamic Noise Reduction of Nonpneumatic Tire Using Nonsmooth Riblet Surface.
    Zhou H; Jiang Z; Yang J; Zhai H; Wang G
    Appl Bionics Biomech; 2020; 2020():4345723. PubMed ID: 32256691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Objective Aerodynamic Optimization of the Streamlined Shape of High-Speed Trains Based on the Kriging Model.
    Xu G; Liang X; Yao S; Chen D; Li Z
    PLoS One; 2017; 12(1):e0170803. PubMed ID: 28129365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of the slipstream development around a high-speed train in a double-track tunnel.
    Fu M; Li P; Liang XF
    PLoS One; 2017; 12(3):e0175044. PubMed ID: 28362835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Source Coupling Based Analysis of the Acoustic Radiation Characteristics of the Wheel-Rail Region of High-Speed Railways.
    Hou B; Li J; Gao L; Wang D
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passenger comfort on high-speed trains: effect of tunnel noise on the subjective assessment of pressure variations.
    Sanok S; Mendolia F; Wittkowski M; Rooney D; Putzke M; Aeschbach D
    Ergonomics; 2015; 58(6):1022-31. PubMed ID: 25597694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerodynamic noise and its reduction of the marine gas turbine air exhaust system.
    Luan Y; Yan L; Sun T; Zunino P
    J Acoust Soc Am; 2024 Apr; 155(4):2728-2740. PubMed ID: 38656335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient prediction methods for the micro-pressure wave from a high-speed train entering a tunnel using the Kirchhoff formulation.
    Yoon T; Lee S
    J Acoust Soc Am; 2001 Nov; 110(5 Pt 1):2379-89. PubMed ID: 11757928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical method to compute acoustic scattering effect of a moving source.
    Song H; Yi M; Huang J; Pan Y; Liu D
    Springerplus; 2016; 5(1):1404. PubMed ID: 27610323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete de-Dopplerization and acoustic holography for external noise of a high-speed train.
    Yang D; Wen J; Miao F; Wang Z; Gu X; Lian X
    J Acoust Soc Am; 2016 Sep; 140(3):1739. PubMed ID: 27914411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Characteristics of Trackside Acoustic Flow Field of High-Speed Train under the Influence of Crosswind.
    Zhao X; Zhang L; Li L; Feng Q
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerodynamic Performance of an Adaptive GFRP Wind Barrier Structure for Railway Bridges.
    Dai Y; Dai X; Bai Y; He X
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental investigation of aerodynamic and aeroacoustic performance of a wind turbine airfoil with trailing edge serrations.
    Cao H; Zhou T; Zhang Y; Zhang M
    J Acoust Soc Am; 2022 Feb; 151(2):1211. PubMed ID: 35232091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.