These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35679151)

  • 1. Modelling articular cartilage: the relative motion of two adjacent poroviscoelastic layers.
    Whiteley JP; Brown CP; Gaffney EA
    Math Med Biol; 2022 Sep; 39(3):251-298. PubMed ID: 35679151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the inclusion of swelling pressure in a tissue level poroviscoelastic model of cartilage deformation.
    Whiteley JP; Gaffney EA
    Math Med Biol; 2020 Sep; 37(3):389-428. PubMed ID: 32072158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analysis of the squeeze-film lubrication mechanism for articular cartilage.
    Hou JS; Mow VC; Lai WM; Holmes MH
    J Biomech; 1992 Mar; 25(3):247-59. PubMed ID: 1564060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An asymptotic solution for the contact of two biphasic cartilage layers.
    Ateshian GA; Lai WM; Zhu WB; Mow VC
    J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement.
    DiSilvestro MR; Zhu Q; Wong M; Jurvelin JS; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling axi-symmetrical joint contact with biphasic cartilage layers--an asymptotic solution.
    Wu JZ; Herzog W; Ronsky J
    J Biomech; 1996 Oct; 29(10):1263-81. PubMed ID: 8884472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element formulation of biphasic poroviscoelastic model for articular cartilage.
    Suh JK; Bai S
    J Biomech Eng; 1998 Apr; 120(2):195-201. PubMed ID: 10412380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: II--Effect of variable strain rates.
    DiSilvestro MR; Zhu Q; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):198-200. PubMed ID: 11340882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression.
    DiSilvestro MR; Suh JK
    J Biomech; 2001 Apr; 34(4):519-25. PubMed ID: 11266676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of highly inhomogeneous biphasic properties on mechanical behaviour of articular cartilage.
    Lin W; Meng Q; Li J; Chen Z; Jin Z
    Comput Methods Programs Biomed; 2021 Jul; 206():106122. PubMed ID: 33979755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.