These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 35679201)
1. Development of biochar-impregnated alginate beads for the delivery of biocontrol agents for peanut aflatoxin. Feng J; Dou J; Wu W Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Aug; 39(8):1487-1500. PubMed ID: 35679201 [TBL] [Abstract][Full Text] [Related]
2. Application of Non-Aflatoxigenic Zhang W; Dou J; Wu Z; Li Q; Wang S; Xu H; Wu W; Sun C Toxins (Basel); 2022 Sep; 14(10):. PubMed ID: 36287950 [TBL] [Abstract][Full Text] [Related]
3. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Alaniz Zanon MS; Barros GG; Chulze SN Int J Food Microbiol; 2016 Aug; 231():63-8. PubMed ID: 27220011 [TBL] [Abstract][Full Text] [Related]
4. Thermosensitive Hydrogel for Encapsulation and Controlled Release of Biocontrol Agents to Prevent Peanut Aflatoxin Contamination. Feng J; Dou J; Zhang Y; Wu Z; Yin D; Wu W Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32138229 [TBL] [Abstract][Full Text] [Related]
5. Growth and Toxigenicity of Tengey TK; Kankam F; Ndela DN; Frempong D; Appaw WO Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006198 [TBL] [Abstract][Full Text] [Related]
6. Study of the genetic diversity of the aflatoxin biosynthesis cluster in Aspergillus section Flavi using insertion/deletion markers in peanut seeds from Georgia, USA. Faustinelli PC; Palencia ER; Sobolev VS; Horn BW; Sheppard HT; Lamb MC; Wang XM; Scheffler BE; Martinez Castillo J; Arias RS Mycologia; 2017; 109(2):200-209. PubMed ID: 28506119 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of potential biocontrol agent for aflatoxin in Argentinean peanuts. Alaniz Zanon MS; Chiotta ML; Giaj-Merlera G; Barros G; Chulze S Int J Food Microbiol; 2013 Apr; 162(3):220-5. PubMed ID: 23454811 [TBL] [Abstract][Full Text] [Related]
8. Polyphasic approach to the identification and characterization of aflatoxigenic strains of Aspergillus section Flavi isolated from peanuts and peanut-based products marketed in Malaysia. Norlia M; Jinap S; Nor-Khaizura MAR; Son R; Chin CK; Sardjono Int J Food Microbiol; 2018 Oct; 282():9-15. PubMed ID: 29885975 [TBL] [Abstract][Full Text] [Related]
9. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Alaniz Zanon MS; Clemente MP; Chulze SN Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766 [TBL] [Abstract][Full Text] [Related]
10. Separate and combined applications of nontoxigenic Aspergillus flavus and A. parasiticus for biocontrol of aflatoxin in peanuts. Dorner JW; Horn BW Mycopathologia; 2007 Apr; 163(4):215-23. PubMed ID: 17390234 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous quantitation of Aspergillus flavus/A. parasiticus and aflatoxins in peanuts. Dorner JW J AOAC Int; 2002; 85(4):911-6. PubMed ID: 12180687 [TBL] [Abstract][Full Text] [Related]
12. Biological Control of Aflatoxin Contamination in U.S. Crops and the Use of Bioplastic Formulations of Aspergillus flavus Biocontrol Strains To Optimize Application Strategies. Abbas HK; Accinelli C; Shier WT J Agric Food Chem; 2017 Aug; 65(33):7081-7087. PubMed ID: 28420231 [TBL] [Abstract][Full Text] [Related]
13. Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut. Hulikunte Mallikarjunaiah N; Jayapala N; Puttaswamy H; Siddapura Ramachandrappa N Microb Pathog; 2017 Jan; 102():21-28. PubMed ID: 27856270 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts. von Hertwig AM; Iamanaka BT; Amorim Neto DP; Rezende JB; Martins LM; Taniwaki MH; Nascimento MS Int J Food Microbiol; 2020 Sep; 328():108666. PubMed ID: 32454365 [TBL] [Abstract][Full Text] [Related]
15. Conidial movement of nontoxigenic Aspergillus flavus and A. parasiticus in peanut fields following application to soil. Horn BW; Greene RL; Sorensen RB; Blankenship PD; Dorner JW Mycopathologia; 2001; 151(2):81-92. PubMed ID: 11554582 [TBL] [Abstract][Full Text] [Related]
16. Colonization of wounded peanut seeds by soil fungi: selectivity for species from Aspergillus section Flavi. Horn BW Mycologia; 2005; 97(1):202-17. PubMed ID: 16389972 [TBL] [Abstract][Full Text] [Related]
17. Relationship between Meloidogyne arenaria and Aflatoxin Contamination in Peanut. Timper P; Wilson DM; Holbrook CC; Maw BW J Nematol; 2004 Jun; 36(2):167-70. PubMed ID: 19262803 [TBL] [Abstract][Full Text] [Related]
18. Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar. Norlia M; Jinap S; Nor-Khaizura MAR; Radu S; John JM; Rahman MAH; Peter ML; Sharif Z Int J Food Microbiol; 2020 Dec; 335():108836. PubMed ID: 33065380 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. de Alencar ER; Faroni LR; Soares Nde F; da Silva WA; Carvalho MC J Sci Food Agric; 2012 Mar; 92(4):899-905. PubMed ID: 22095762 [TBL] [Abstract][Full Text] [Related]
20. Effect of geocarposphere temperature on pre-harvest colonization of drought-stressed peanuts by Aspergillus flavus and subsequent aflatoxin contamination. Blankenship PD; Cole RJ; Sanders TH; Hill RA Mycopathologia; 1984 Mar; 85(1-2):69-74. PubMed ID: 6427616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]