BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35679533)

  • 1. Heterogeneous data integration methods for patient similarity networks.
    Gliozzo J; Mesiti M; Notaro M; Petrini A; Patak A; Puertas-Gallardo A; Paccanaro A; Valentini G; Casiraghi E
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35679533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based integration of multi-omics data for clinical outcome prediction in neuroblastoma.
    Wang C; Lue W; Kaalia R; Kumar P; Rajapakse JC
    Sci Rep; 2022 Sep; 12(1):15425. PubMed ID: 36104347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Inductive-Transductive Learning With Graph Neural Networks.
    Ciano G; Rossi A; Bianchini M; Scarselli F
    IEEE Trans Pattern Anal Mach Intell; 2022 Feb; 44(2):758-769. PubMed ID: 33493112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control.
    Yang S; Yang B; Kang Z; Deng L
    Neural Netw; 2021 Jul; 139():265-277. PubMed ID: 33838602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on machine learning principles for multi-view biological data integration.
    Li Y; Wu FX; Ngom A
    Brief Bioinform; 2018 Mar; 19(2):325-340. PubMed ID: 28011753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies.
    Gao Y; Sun F
    PLoS Comput Biol; 2023 Oct; 19(10):e1010608. PubMed ID: 37844077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. netDx: interpretable patient classification using integrated patient similarity networks.
    Pai S; Hui S; Isserlin R; Shah MA; Kaka H; Bader GD
    Mol Syst Biol; 2019 Mar; 15(3):e8497. PubMed ID: 30872331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine Learning-Based Approach Using Multi-omics Data to Predict Metabolic Pathways.
    Niranjan V; Uttarkar A; Kaul A; Varghese M
    Methods Mol Biol; 2023; 2553():441-452. PubMed ID: 36227554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction.
    Xuan P; Zhang Y; Cui H; Zhang T; Guo M; Nakaguchi T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MGAT: Multi-view Graph Attention Networks.
    Xie Y; Zhang Y; Gong M; Tang Z; Han C
    Neural Netw; 2020 Dec; 132():180-189. PubMed ID: 32911303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Context-Aware Biomedical Text Summarization Using Deep Neural Network: Model Development and Validation.
    Afzal M; Alam F; Malik KM; Malik GM
    J Med Internet Res; 2020 Oct; 22(10):e19810. PubMed ID: 33095174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph representation learning in bioinformatics: trends, methods and applications.
    Yi HC; You ZH; Huang DS; Kwoh CK
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34471921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress of Gliomas in Machine Learning.
    Wu Y; Guo Y; Ma J; Sa Y; Li Q; Zhang N
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Ă…rsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.