These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35679851)

  • 1. Quantum teleportation between the narrow armchair graphene nanoribbons with zigzag ends.
    Tan XD; Zhang L
    J Phys Condens Matter; 2022 Jun; 34(33):. PubMed ID: 35679851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Resumable Quantum Teleportation of a Two-Qubit Entangled State.
    Wang ZY; Gou YT; Hou JX; Cao LK; Wang XH
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teleportation-based realization of an optical quantum two-qubit entangling gate.
    Gao WB; Goebel AM; Lu CY; Dai HN; Wagenknecht C; Zhang Q; Zhao B; Peng CZ; Chen ZB; Chen YA; Pan JW
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):20869-74. PubMed ID: 21098305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Edge States of Graphene Nanoribbons for Narrow-Band Photoluminescence.
    Ma C; Xiao Z; Puretzky AA; Wang H; Mohsin A; Huang J; Liang L; Luo Y; Lawrie BJ; Gu G; Lu W; Hong K; Bernholc J; Li AP
    ACS Nano; 2020 Apr; 14(4):5090-5098. PubMed ID: 32283017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of symmetry in quantum blocking of Andreev reflection in graphene nanoribbons side-terminated by superconductors.
    Takagaki Y
    J Phys Condens Matter; 2023 May; 35(31):. PubMed ID: 37084742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical manipulations on electronic transport of graphene nanoribbons.
    Wang J; Zhang G; Ye F; Wang X
    J Phys Condens Matter; 2015 Jun; 27(22):225305. PubMed ID: 25985040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic correlations in short and narrow graphene armchair nanoribbons.
    Golor M; Koop C; Lang TC; Wessel S; Schmidt MJ
    Phys Rev Lett; 2013 Aug; 111(8):085504. PubMed ID: 24010454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum correlations in chiral graphene nanoribbons.
    Tan XD; Koop C; Liao XP; Sun L
    J Phys Condens Matter; 2016 Nov; 28(43):435601. PubMed ID: 27603682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental teleportation of a quantum controlled-NOT gate.
    Huang YF; Ren XF; Zhang YS; Duan LM; Guo GC
    Phys Rev Lett; 2004 Dec; 93(24):240501. PubMed ID: 15697787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride.
    Wang HS; Chen L; Elibol K; He L; Wang H; Chen C; Jiang C; Li C; Wu T; Cong CX; Pennycook TJ; Argentero G; Zhang D; Watanabe K; Taniguchi T; Wei W; Yuan Q; Meyer JC; Xie X
    Nat Mater; 2021 Feb; 20(2):202-207. PubMed ID: 32958881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic Teleportation of Arbitrary Two-Qubit Quantum State via Non-Symmetric Quantum Channel.
    Wang K; Yu XT; Cai XF; Zhang ZC
    Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum gate teleportation between separated qubits in a trapped-ion processor.
    Wan Y; Kienzler D; Erickson SD; Mayer KH; Tan TR; Wu JJ; Vasconcelos HM; Glancy S; Knill E; Wineland DJ; Wilson AC; Leibfried D
    Science; 2019 May; 364(6443):875-878. PubMed ID: 31147517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qubit teleportation between non-neighbouring nodes in a quantum network.
    Hermans SLN; Pompili M; Beukers HKC; Baier S; Borregaard J; Hanson R
    Nature; 2022 May; 605(7911):663-668. PubMed ID: 35614248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.
    Takeda S; Mizuta T; Fuwa M; van Loock P; Furusawa A
    Nature; 2013 Aug; 500(7462):315-8. PubMed ID: 23955230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic and magnetic properties of armchair and zigzag graphene nanoribbons.
    Owens FJ
    J Chem Phys; 2008 May; 128(19):194701. PubMed ID: 18500880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-Polarizing Electron Beam Splitter from Crossed Graphene Nanoribbons.
    Sanz S; Papior N; Giedke G; Sánchez-Portal D; Brandbyge M; Frederiksen T
    Phys Rev Lett; 2022 Jul; 129(3):037701. PubMed ID: 35905343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gate electrostatics and quantum capacitance of graphene nanoribbons.
    Guo J; Yoon Y; Ouyang Y
    Nano Lett; 2007 Jul; 7(7):1935-40. PubMed ID: 17552571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum teleportation in Heisenberg chain with magnetic-field gradient under intrinsic decoherence.
    Hosseiny SM; Seyed-Yazdi J; Norouzi M; Livreri P
    Sci Rep; 2024 Apr; 14(1):9607. PubMed ID: 38671044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helical edge states and edge-state transport in strained armchair graphene nanoribbons.
    Liu ZF; Wu QP; Chen AX; Xiao XB; Liu NH; Miao GX
    Sci Rep; 2017 Aug; 7(1):8854. PubMed ID: 28821764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.