These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35679886)

  • 1. Phosphatic metabolism in dark- and light-adapted rat retinas.
    Glonek T; Snogren T; Schmidt SY; Hearn SL; Isreb MA; Greiner JV
    Exp Eye Res; 2022 Aug; 221():109141. PubMed ID: 35679886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-induced changes in energy metabolites, guanine nucleotides, and guanylate cyclase within frog retinal layers.
    de Azeredo FA; Lust WD; Passonneau JV
    J Biol Chem; 1981 Mar; 256(6):2731-5. PubMed ID: 6110661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light exposure induces ubiquitin conjugation and degradation activities in the rat retina.
    Naash MI; Al-Ubaidi MR; Anderson RE
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2344-54. PubMed ID: 9344358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time hexose monophosphate shunt activity in light- and dark-adapted rabbit retinas.
    Aguiar E; Cheng HM; Lam DM
    Ophthalmic Res; 1987; 19(5):298-302. PubMed ID: 3438050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased energy requirement of toad retina during light adaptation as demonstrated by 31P nuclear magnetic resonance.
    Apte DV; Ebrey TG; Dawson MJ
    J Physiol; 1993 May; 464():291-306. PubMed ID: 8229802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide and P-creatine levels in layers of frog retina as a function of dark and light adaptation.
    Barbehenn EK; Noelker DM; Chader GJ; Passonneau JV
    Exp Eye Res; 1985 May; 40(5):675-86. PubMed ID: 3874085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic mapping in mammalian retina: a biochemical and 3H-2-deoxyglucose autoradiographic study.
    Winkler BS; Pourcho RG; Starnes C; Slocum J; Slocum N
    Exp Eye Res; 2003 Sep; 77(3):327-37. PubMed ID: 12907165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of light and calcium on guanosine 5'-triphosphate in isolated frog rod outer segments.
    Biernbaum MS; Bownds MD
    J Gen Physiol; 1979 Dec; 74(6):649-69. PubMed ID: 317090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation.
    Cook PB; McReynolds JS
    J Neurophysiol; 1998 Jan; 79(1):197-204. PubMed ID: 9425191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of 3':5'-cyclic AMP and 3':5'-cyclic GMP in rabbit retina in vivo: selective effects of dark and light adaptation and ischemia.
    Orr HT; Lowry OH; Cohen AI; Ferrendelli JA
    Proc Natl Acad Sci U S A; 1976 Dec; 73(12):4442-5. PubMed ID: 188039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolytic and oxidative metabolism in relation to retinal function.
    Winkler BS
    J Gen Physiol; 1981 Jun; 77(6):667-92. PubMed ID: 6267165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lenticular energy metabolism during exogenous calcium deprivation and during recovery: effects of dextran-40.
    Glonek T; Kopp SJ; Greiner JV; Sanders DR
    Exp Eye Res; 1985 Feb; 40(2):169-78. PubMed ID: 2579839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoside triphosphates and hydrolysis-resistant analogues: effects on PIII responses in the isolated skate retina.
    Clack JW; Pepperberg DR
    Vision Res; 1984; 24(12):1859-64. PubMed ID: 6534008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic nucleotide distribution in identified layers of suprafused rabbit retinas.
    Blazynski C; Cohen AI
    Exp Eye Res; 1984 Mar; 38(3):279-90. PubMed ID: 6202537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-31 nuclear magnetic resonance analysis of brain: II. Effects of oxygen deprivation on isolated perfused and nonperfused rat brain.
    Kopp SJ; Krieglstein J; Freidank A; Rachman A; Seibert A; Cohen MM
    J Neurochem; 1984 Dec; 43(6):1716-31. PubMed ID: 6092545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S-crystallin and arginine kinase bind F-actin in light- and dark-adapted octopus retinas.
    Zuniga FI; Ochoa GH; Kelly SD; Robles LJ
    Curr Eye Res; 2004 May; 28(5):343-50. PubMed ID: 15287371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen consumption and distribution in the Long-Evans rat retina.
    Lau JC; Linsenmeier RA
    Exp Eye Res; 2012 Sep; 102():50-8. PubMed ID: 22828049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunocytochemical localization of phosphatidylinositol-4,5-bisphosphate in dark- and light-adapted rat retinas.
    Das ND; Yoshioka T; Samuelson D; Shichi H
    Cell Struct Funct; 1986 Mar; 11(1):53-63. PubMed ID: 2420478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer retinal anoxia during dark adaptation is not a general property of mammalian retinas.
    Yu DY; Cringle SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2002 May; 132(1):47-52. PubMed ID: 12062190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.