BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35679897)

  • 1. Crystal structure of Grimontia hollisae collagenase provides insights into its novel substrate specificity toward collagen.
    Ikeuchi T; Yasumoto M; Takita T; Tanaka K; Kusubata M; Hayashida O; Hattori S; Mizutani K; Mikami B; Yasukawa K
    J Biol Chem; 2022 Aug; 298(8):102109. PubMed ID: 35679897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the catalytic mechanism of Grimontia hollisae collagenase through structural and mutational analyses.
    Ueshima S; Yasumoto M; Kitagawa Y; Akazawa K; Takita T; Tanaka K; Hattori S; Mizutani K; Mikami B; Yasukawa K
    FEBS Lett; 2023 Oct; 597(19):2473-2483. PubMed ID: 37698340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of histidine and tyrosine residues in the active site of collagenase in Grimontia hollisae.
    Hayashi K; Ikeuchi T; Morishita R; Qian J; Kojima K; Takita T; Tanaka K; Hattori S; Yasukawa K
    J Biochem; 2020 Oct; 168(4):385-392. PubMed ID: 32386303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative studies on the activities of collagenases from Grimontia hollisae and Clostridium hystoliticum in the hydrolysis of synthetic substrates.
    Takita T; Qian J; Geng H; He Z; Nemoto S; Mori M; Tanaka K; Hattori S; Kojima K; Yasukawa K
    J Biochem; 2018 May; 163(5):425-431. PubMed ID: 29444248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C-terminal segment of collagenase in
    Tanaka K; Teramura N; Hayashida O; Iijima K; Okitsu T; Hattori S
    FEBS Open Bio; 2018 Oct; 8(10):1691-1702. PubMed ID: 30338219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.
    Okuyama K; Hongo C; Wu G; Mizuno K; Noguchi K; Ebisuzaki S; Tanaka Y; Nishino N; Bächinger HP
    Biopolymers; 2009 May; 91(5):361-72. PubMed ID: 19137577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic protease specificity profiling of clostridial collagenases reveals their intrinsic nature as dedicated degraders of collagen.
    Eckhard U; Huesgen PF; Brandstetter H; Overall CM
    J Proteomics; 2014 Apr; 100(100):102-14. PubMed ID: 24125730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The crystal structure of a collagen-like polypeptide with 3(S)-hydroxyproline residues in the Xaa position forms a standard 7/2 collagen triple helix.
    Schumacher MA; Mizuno K; Bächinger HP
    J Biol Chem; 2006 Sep; 281(37):27566-74. PubMed ID: 16798737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design.
    Grams F; Reinemer P; Powers JC; Kleine T; Pieper M; Tschesche H; Huber R; Bode W
    Eur J Biochem; 1995 Mar; 228(3):830-41. PubMed ID: 7737183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
    Mizuno K; Hayashi T; Peyton DH; Bachinger HP
    J Biol Chem; 2004 Jan; 279(1):282-7. PubMed ID: 14576161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombinant collagenase from Grimontia hollisae as a tissue dissociation enzyme for isolating primary cells.
    Tanaka K; Okitsu T; Teramura N; Iijima K; Hayashida O; Teramae H; Hattori S
    Sci Rep; 2020 Mar; 10(1):3927. PubMed ID: 32127566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two crystal modifications of (Pro-Pro-Gly)4-Hyp-Hyp-Gly-(Pro-Pro-Gly)4 reveal the puckering preference of Hyp(X) in the Hyp(X):Hyp(Y) and Hyp(X):Pro(Y) stacking pairs in collagen helices.
    Okuyama K; Morimoto T; Narita H; Kawaguchi T; Mizuno K; Bächinger HP; Wu G; Noguchi K
    Acta Crystallogr D Biol Crystallogr; 2010 Jan; 66(Pt 1):88-96. PubMed ID: 20057053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of 3-hydroxyproline residues on collagen stability.
    Jenkins CL; Bretscher LE; Guzei IA; Raines RT
    J Am Chem Soc; 2003 May; 125(21):6422-7. PubMed ID: 12785781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The triple helical structure and stability of collagen model peptide with 4(S)-hydroxyprolyl-Pro-Gly units.
    Motooka D; Kawahara K; Nakamura S; Doi M; Nishi Y; Nishiuchi Y; Kang YK; Nakazawa T; Uchiyama S; Yoshida T; Ohkubo T; Kobayashi Y
    Biopolymers; 2012; 98(2):111-21. PubMed ID: 22020801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y
    J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position.
    Schumacher M; Mizuno K; Bächinger HP
    J Biol Chem; 2005 May; 280(21):20397-403. PubMed ID: 15784619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a novel collagenase gene from the gram-negative bacterium Grimontia (Vibrio) hollisae 1706B and its efficient expression in Brevibacillus choshinensis.
    Teramura N; Tanaka K; Iijima K; Hayashida O; Suzuki K; Hattori S; Irie S
    J Bacteriol; 2011 Jun; 193(12):3049-56. PubMed ID: 21515782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation/Hydroxylation-induced stabilization of the collagen triple helix. 4-trans-hydroxyproline in the Xaa position can stabilize the triple helix.
    Bann JG; Bächinger HP
    J Biol Chem; 2000 Aug; 275(32):24466-9. PubMed ID: 10827193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity.
    Bode W; Reinemer P; Huber R; Kleine T; Schnierer S; Tschesche H
    EMBO J; 1994 Mar; 13(6):1263-9. PubMed ID: 8137810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate recognition by the collagen-binding domain of Clostridium histolyticum class I collagenase.
    Matsushita O; Koide T; Kobayashi R; Nagata K; Okabe A
    J Biol Chem; 2001 Mar; 276(12):8761-70. PubMed ID: 11121400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.