These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35679974)

  • 21. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications.
    Liu Y; Liu H; Guo S; Zhao Y; Qi J; Zhang R; Ren J; Cheng H; Zong M; Wu X; Li B
    Carbohydr Polym; 2024 Jan; 323():121445. PubMed ID: 37940307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavonoids modulate tight junction barrier functions in hyperglycemic human intestinal Caco-2 cells.
    Sharma S; Tripathi P; Sharma J; Dixit A
    Nutrition; 2020 Oct; 78():110792. PubMed ID: 32473529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of cellulose nanocrystals (CNC) on permeation through intestinal monolayer and mucus model in vitro.
    Lin YJ; Qin Z; Paton CM; Fox DM; Kong F
    Carbohydr Polym; 2021 Jul; 263():117984. PubMed ID: 33858577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kiwifruit cysteine protease actinidin compromises the intestinal barrier by disrupting tight junctions.
    Grozdanovic MM; Čavić M; Nešić A; Andjelković U; Akbari P; Smit JJ; Gavrović-Jankulović M
    Biochim Biophys Acta; 2016 Mar; 1860(3):516-26. PubMed ID: 26701113
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films.
    Yang Y; Liu H; Wu M; Ma J; Lu P
    Int J Biol Macromol; 2020 Oct; 161():627-635. PubMed ID: 32535206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.
    Khan A; Wen Y; Huq T; Ni Y
    J Agric Food Chem; 2018 Jan; 66(1):8-19. PubMed ID: 29251504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specifically Sized Hyaluronan (35 kDa) Prevents Ethanol-Induced Disruption of Epithelial Tight Junctions Through a layilin-Dependent Mechanism in Caco-2 Cells.
    Bellos DA; Sharma D; McMullen MR; Wat J; Saikia P; de la Motte CA; Nagy LE
    Alcohol Clin Exp Res; 2019 Sep; 43(9):1848-1858. PubMed ID: 31237689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genotoxicity assessment of carbon-based nanomaterials; Have their unique physicochemical properties made them double-edged swords?
    Samadian H; Salami MS; Jaymand M; Azarnezhad A; Najafi M; Barabadi H; Ahmadi A
    Mutat Res Rev Mutat Res; 2020; 783():108296. PubMed ID: 32192648
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conditioned medium from LS 174T goblet cells treated with oxyresveratrol strengthens tight junctions in Caco-2 cells.
    Hwang D; Jo H; Hwang S; Kim JK; Kim IH; Lim YH
    Biomed Pharmacother; 2017 Jan; 85():280-286. PubMed ID: 27876210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anisakis simplex products impair intestinal epithelial barrier function and occludin and zonula occludens-1 localisation in differentiated Caco-2 cells.
    Carballeda-Sangiao N; Sánchez-Alonso I; Navas A; Arcos SC; de Palencia PF; Careche M; González-Muñoz M
    PLoS Negl Trop Dis; 2020 Jul; 14(7):e0008462. PubMed ID: 32628665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes.
    Svadlakova T; Holmannova D; Kolackova M; Malkova A; Krejsek J; Fiala Z
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for enhancing the cellular uptake of fish-derived peptide.
    Zhao Y; Du W; Wu H; Wu M; Liu Z; Dong S
    J Food Biochem; 2019 Feb; 43(2):e12730. PubMed ID: 31353647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tackling the cytotoxicity and genotoxicity of cellulose nanofibers from the banana rachis: A new food packaging alternative.
    Mejía-Jaramillo AM; Gómez-Hoyos C; Cañas Gutierrez AI; Correa-Hincapié N; Zuluaga Gallego R; Triana-Chávez O
    Heliyon; 2023 Nov; 9(11):e21560. PubMed ID: 37954306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.
    Farooq A; Patoary MK; Zhang M; Mussana H; Li M; Naeem MA; Mushtaq M; Farooq A; Liu L
    Int J Biol Macromol; 2020 Jul; 154():1050-1073. PubMed ID: 32201207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactants enhance the tight-junction permeability of food allergens in human intestinal epithelial Caco-2 cells.
    Mine Y; Zhang JW
    Int Arch Allergy Immunol; 2003 Feb; 130(2):135-42. PubMed ID: 12673067
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Hung YK; Ho ST; Kuo CY; Chen MJ
    Int J Med Sci; 2021; 18(8):1778-1785. PubMed ID: 33746595
    [No Abstract]   [Full Text] [Related]  

  • 37. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of cellulose nanomaterials via cellulose oxalates.
    Henschen J; Li D; Ek M
    Carbohydr Polym; 2019 Jun; 213():208-216. PubMed ID: 30879662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards sustainable production and utilization of plant-biomass-based nanomaterials: a review and analysis of recent developments.
    Zhu JY; Agarwal UP; Ciesielski PN; Himmel ME; Gao R; Deng Y; Morits M; Österberg M
    Biotechnol Biofuels; 2021 May; 14(1):114. PubMed ID: 33957955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxone
    Moore Ii JP; Dachavaram SS; Bommagani S; Penthala NR; Venkatraman P; Foster EJ; Crooks PA; A Hestekin J
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.