BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35679977)

  • 1. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study.
    Goyal H; Mondal P
    Chemosphere; 2022 Oct; 304():135243. PubMed ID: 35679977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?
    Goren AY; Kobya M; Khataee A
    Sci Total Environ; 2022 Feb; 808():152135. PubMed ID: 34864021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of hydrated silica, fluoride and arsenic from groundwater by electrocoagulation using a continuous reactor with a twelve-cell stack.
    Rosales M; Coreño O; Nava JL
    Chemosphere; 2018 Nov; 211():149-155. PubMed ID: 30071426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing arsenic and groundwater contaminants down to safe level for drinking purposes via Fe
    Gurbuz F; Akpınar Ş; Ozcan S; Acet Ö; Odabaşı M
    Environ Monit Assess; 2019 Nov; 191(12):722. PubMed ID: 31696322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of arsenic and fluoride from groundwater by coagulation-adsorption with polyaluminum chloride.
    Ingallinella AM; Pacini VA; Fernández RG; Vidoni RM; Sanguinetti G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(11):1288-96. PubMed ID: 21879862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.
    Guzmán A; Nava JL; Coreño O; Rodríguez I; Gutiérrez S
    Chemosphere; 2016 Feb; 144():2113-20. PubMed ID: 26583293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.
    Jadhav SV; Bringas E; Yadav GD; Rathod VK; Ortiz I; Marathe KV
    J Environ Manage; 2015 Oct; 162():306-25. PubMed ID: 26265600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of arsenic and fluoride bearing spent adsorbent in clay bricks: Preparation, characterization and leaching studies.
    Rathore VK; Mondal P
    J Environ Manage; 2017 Sep; 200():160-169. PubMed ID: 28577453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of fluoride and hydrated silica from underground water by electrocoagulation in a flow channel reactor.
    Castañeda LF; Coreño O; Nava JL; Carreño G
    Chemosphere; 2020 Apr; 244():125417. PubMed ID: 31809937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater.
    Mendoza-Chávez CE; Carabin A; Dirany A; Drogui P; Buelna G; Meza-Montenegro MM; Ulloa-Mercado RG; Diaz-Tenorio LM; Leyva-Soto LA; Gortáres-Moroyoqui P
    Environ Technol; 2021 Sep; 42(22):3463-3474. PubMed ID: 32072869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations.
    Mena VF; Betancor-Abreu A; González S; Delgado S; Souto RM; Santana JJ
    J Environ Manage; 2019 Sep; 246():472-483. PubMed ID: 31200181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocoagulation for Arsenic Removal: Field Trials in Rural West Bengal.
    Dutta N; Haldar A; Gupta A
    Arch Environ Contam Toxicol; 2021 Jan; 80(1):248-258. PubMed ID: 33398394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.
    Wan W; Pepping TJ; Banerji T; Chaudhari S; Giammar DE
    Water Res; 2011 Jan; 45(1):384-92. PubMed ID: 20800261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminium removal from water after defluoridation with the electrocoagulation process.
    Sinha R; Mathur S; Brighu U
    Environ Technol; 2015; 36(21):2724-31. PubMed ID: 25903166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. House hold unit for the treatment of fluoride, iron, arsenic and microorganism contaminated drinking water.
    Dhadge VL; Medhi CR; Changmai M; Purkait MK
    Chemosphere; 2018 May; 199():728-736. PubMed ID: 29475161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab scale study on electrocoagulation defluoridation process optimization along with aluminium leaching in the process and comparison with full scale plant operation.
    Gwala P; Andey S; Mhaisalkar V; Labhasetwar P; Pimpalkar S; Kshirsagar C
    Water Sci Technol; 2011; 63(12):2788-95. PubMed ID: 22049700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions.
    Goren AY; Kobya M
    Chemosphere; 2021 Jan; 263():128253. PubMed ID: 33297198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.