These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Growing Class of Novel RNAi Therapeutics. Traber GM; Yu AM Mol Pharmacol; 2024 Jun; 106(1):13-20. PubMed ID: 38719476 [TBL] [Abstract][Full Text] [Related]
3. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. Gangopadhyay S; Gore KR RNA Biol; 2022 Jan; 19(1):452-467. PubMed ID: 35352626 [TBL] [Abstract][Full Text] [Related]
4. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Wang P; Zhou Y; Richards AM Theranostics; 2021; 11(18):8771-8796. PubMed ID: 34522211 [TBL] [Abstract][Full Text] [Related]
5. RNAi-based therapeutics and tumor targeted delivery in cancer. Kara G; Calin GA; Ozpolat B Adv Drug Deliv Rev; 2022 Mar; 182():114113. PubMed ID: 35063535 [TBL] [Abstract][Full Text] [Related]
6. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Bartoszewski R; Sikorski AF Cell Mol Biol Lett; 2019; 24():69. PubMed ID: 31867046 [TBL] [Abstract][Full Text] [Related]
7. Advances in structural-guided modifications of siRNA. Li Q; Dong M; Chen P Bioorg Med Chem; 2024 Aug; 110():117825. PubMed ID: 38954918 [TBL] [Abstract][Full Text] [Related]
8. Clinical Pharmacology of RNA Interference-Based Therapeutics: A Summary Based on Food and Drug Administration-Approved Small Interfering RNAs. Jing X; Arya V; Reynolds KS; Rogers H Drug Metab Dispos; 2023 Feb; 51(2):193-198. PubMed ID: 36332914 [TBL] [Abstract][Full Text] [Related]
9. The current state and future directions of RNAi-based therapeutics. Setten RL; Rossi JJ; Han SP Nat Rev Drug Discov; 2019 Jun; 18(6):421-446. PubMed ID: 30846871 [TBL] [Abstract][Full Text] [Related]
11. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics. Cuciniello R; Filosa S; Crispi S J Exp Clin Cancer Res; 2021 Dec; 40(1):383. PubMed ID: 34863235 [TBL] [Abstract][Full Text] [Related]
12. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996 [TBL] [Abstract][Full Text] [Related]
14. RNAi-based drug discovery and its application to therapeutics. Hokaiwado N; Takeshita F; Banas A; Ochiya T IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962 [TBL] [Abstract][Full Text] [Related]
15. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Yu AM; Choi YH; Tu MJ Pharmacol Rev; 2020 Oct; 72(4):862-898. PubMed ID: 32929000 [TBL] [Abstract][Full Text] [Related]
16. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma. Farra R; Grassi M; Grassi G; Dapas B World J Gastroenterol; 2015 Aug; 21(30):8994-9001. PubMed ID: 26290628 [TBL] [Abstract][Full Text] [Related]
17. Theranostic Nanoparticles for RNA-Based Cancer Treatment. Revia RA; Stephen ZR; Zhang M Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134 [TBL] [Abstract][Full Text] [Related]
18. RNA interference as a gene-specific approach for molecular medicine. Grünweller A; Hartmann RK Curr Med Chem; 2005; 12(26):3143-61. PubMed ID: 16375707 [TBL] [Abstract][Full Text] [Related]
19. RNAi therapeutic and its innovative biotechnological evolution. Weng Y; Xiao H; Zhang J; Liang XJ; Huang Y Biotechnol Adv; 2019; 37(5):801-825. PubMed ID: 31034960 [TBL] [Abstract][Full Text] [Related]
20. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics. Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]