BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 35680378)

  • 1. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies.
    Traber GM; Yu AM
    J Pharmacol Exp Ther; 2023 Jan; 384(1):133-154. PubMed ID: 35680378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Growing Class of Novel RNAi Therapeutics.
    Traber GM; Yu AM
    Mol Pharmacol; 2024 Jun; 106(1):13-20. PubMed ID: 38719476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications.
    Gangopadhyay S; Gore KR
    RNA Biol; 2022 Jan; 19(1):452-467. PubMed ID: 35352626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry.
    Wang P; Zhou Y; Richards AM
    Theranostics; 2021; 11(18):8771-8796. PubMed ID: 34522211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNAi-based therapeutics and tumor targeted delivery in cancer.
    Kara G; Calin GA; Ozpolat B
    Adv Drug Deliv Rev; 2022 Mar; 182():114113. PubMed ID: 35063535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Editorial focus: understanding off-target effects as the key to successful RNAi therapy.
    Bartoszewski R; Sikorski AF
    Cell Mol Biol Lett; 2019; 24():69. PubMed ID: 31867046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Pharmacology of RNA Interference-Based Therapeutics: A Summary Based on Food and Drug Administration-Approved Small Interfering RNAs.
    Jing X; Arya V; Reynolds KS; Rogers H
    Drug Metab Dispos; 2023 Feb; 51(2):193-198. PubMed ID: 36332914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The current state and future directions of RNAi-based therapeutics.
    Setten RL; Rossi JJ; Han SP
    Nat Rev Drug Discov; 2019 Jun; 18(6):421-446. PubMed ID: 30846871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanisms of RNA-triggered gene silencing machineries.
    Li Z; Rana TM
    Acc Chem Res; 2012 Jul; 45(7):1122-31. PubMed ID: 22304792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics.
    Cuciniello R; Filosa S; Crispi S
    J Exp Clin Cancer Res; 2021 Dec; 40(1):383. PubMed ID: 34863235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered non-coding RNA agent (BERA) in action.
    Duan Z; Yu AM
    Bioengineered; 2016 Nov; 7(6):411-417. PubMed ID: 27415469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNAi-based drug discovery and its application to therapeutics.
    Hokaiwado N; Takeshita F; Banas A; Ochiya T
    IDrugs; 2008 Apr; 11(4):274-8. PubMed ID: 18379962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges.
    Yu AM; Choi YH; Tu MJ
    Pharmacol Rev; 2020 Oct; 72(4):862-898. PubMed ID: 32929000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic potential of small interfering RNAs/micro interfering RNA in hepatocellular carcinoma.
    Farra R; Grassi M; Grassi G; Dapas B
    World J Gastroenterol; 2015 Aug; 21(30):8994-9001. PubMed ID: 26290628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theranostic Nanoparticles for RNA-Based Cancer Treatment.
    Revia RA; Stephen ZR; Zhang M
    Acc Chem Res; 2019 Jun; 52(6):1496-1506. PubMed ID: 31135134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA interference as a gene-specific approach for molecular medicine.
    Grünweller A; Hartmann RK
    Curr Med Chem; 2005; 12(26):3143-61. PubMed ID: 16375707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNAi therapeutic and its innovative biotechnological evolution.
    Weng Y; Xiao H; Zhang J; Liang XJ; Huang Y
    Biotechnol Adv; 2019; 37(5):801-825. PubMed ID: 31034960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
    Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L
    Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for the potential of RNA interference in the treatment of autoimmune diseases: Small interfering RNAs in the spotlight.
    Gorabi AM; Kiaie N; Aslani S; Jamialahmadi T; Johnston TP; Sahebkar A
    J Autoimmun; 2020 Nov; 114():102529. PubMed ID: 32782117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.