BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 35680454)

  • 1. Identification of potential therapeutic targets associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Sharma A; Yadav D; Rao P; Sinha S; Goswami D; Rawal RM; Shrivastava N
    Comput Biol Med; 2022 Jul; 146():105688. PubMed ID: 35680454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The identification of a common different gene expression signature in patients with colorectal cancer.
    Zhao ZW; Fan XX; Yang LL; Song JJ; Fang SJ; Tu JF; Chen MJ; Zheng LY; Wu FZ; Zhang DK; Ying XH; Ji JS
    Math Biosci Eng; 2019 Apr; 16(4):2942-2958. PubMed ID: 31137244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis.
    Liang B; Li C; Zhao J
    Med Oncol; 2016 Oct; 33(10):111. PubMed ID: 27581154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening key genes and signaling pathways in colorectal cancer by integrated bioinformatics analysis.
    Yu C; Chen F; Jiang J; Zhang H; Zhou M
    Mol Med Rep; 2019 Aug; 20(2):1259-1269. PubMed ID: 31173250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer.
    Zhou H; Yang Z; Yue J; Chen Y; Chen T; Mu T; Liu H; Bi X
    Mol Carcinog; 2020 Apr; 59(4):425-438. PubMed ID: 32064687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of hub genes and pathways in adrenocortical carcinoma by integrated bioinformatic analysis.
    Guo J; Gu Y; Ma X; Zhang L; Li H; Yan Z; Han Y; Xie L; Guo X
    J Cell Mol Med; 2020 Apr; 24(8):4428-4438. PubMed ID: 32147961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing bioinformatics analysis to identify hub genes and microRNAs involved in colorectal cancer.
    Ebadfardzadeh J; Kazemi M; Aghazadeh A; Rezaei M; Shirvaliloo M; Sheervalilou R
    Med Oncol; 2021 Aug; 38(9):114. PubMed ID: 34390411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis.
    Zheng Z; Xie J; Xiong L; Gao M; Qin L; Dai C; Liang Z; Wang Y; Xue J; Wang Q; Wang W; Li X
    Med Oncol; 2020 Oct; 37(11):104. PubMed ID: 33078282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Interaction Analysis of Molecular Markers in Colorectal Cancer by Integrated Bioinformatics Analysis.
    Han B; Feng D; Yu X; Zhang Y; Liu Y; Zhou L
    Med Sci Monit; 2018 Aug; 24():6059-6069. PubMed ID: 30168505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of crucial hub genes and potential molecular mechanisms in breast cancer by integrated bioinformatics analysis and experimental validation.
    Yadav DK; Sharma A; Dube P; Shaikh S; Vaghasia H; Rawal RM
    Comput Biol Med; 2022 Oct; 149():106036. PubMed ID: 36096037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
    Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K
    Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinformatics Analysis of Candidate Genes and Pathways Related to Hepatocellular Carcinoma in China: A Study Based on Public Databases.
    Zhang P; Feng J; Wu X; Chu W; Zhang Y; Li P
    Pathol Oncol Res; 2021; 27():588532. PubMed ID: 34257537
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning.
    Hammad A; Elshaer M; Tang X
    Math Biosci Eng; 2021 Oct; 18(6):8997-9015. PubMed ID: 34814332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated Analysis of Hub Genes and Pathways In Esophageal Carcinoma Based on NCBI's Gene Expression Omnibus (GEO) Database: A Bioinformatics Analysis.
    Yu-Jing T; Wen-Jing T; Biao T
    Med Sci Monit; 2020 Aug; 26():e923934. PubMed ID: 32756534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer.
    Lei X; Jing J; Zhang M; Guan B; Dong Z; Wang C
    Nutr Cancer; 2021; 73(11-12):2568-2578. PubMed ID: 33153324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer.
    Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y
    J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments.
    Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J
    Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.
    Chen L; Lu D; Sun K; Xu Y; Hu P; Li X; Xu F
    Gene; 2019 Apr; 692():119-125. PubMed ID: 30654001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An age stratified analysis of the biomarkers in patients with colorectal cancer.
    Yao H; Li C; Tan X
    Sci Rep; 2021 Nov; 11(1):22464. PubMed ID: 34789836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.