These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 35680608)
21. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445 [TBL] [Abstract][Full Text] [Related]
22. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
24. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146 [TBL] [Abstract][Full Text] [Related]
25. Regulating the Solvation Structure of Li He W; Xu H; Chen Z; Long J; Zhang J; Jiang J; Dou H; Zhang X Nanomicro Lett; 2023 Apr; 15(1):107. PubMed ID: 37071270 [TBL] [Abstract][Full Text] [Related]
26. The Raw Mixed Conducting Interphase Affords Effective Prelithiation in Working Batteries. Yue XY; Yao YX; Zhang J; Li Z; Yang SY; Li XL; Yan C; Zhang Q Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202205697. PubMed ID: 35532047 [TBL] [Abstract][Full Text] [Related]
27. Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Jang J; Kang I; Choi J; Jeong H; Yi KW; Hong J; Lee M Angew Chem Int Ed Engl; 2020 Aug; 59(34):14473-14480. PubMed ID: 32400120 [TBL] [Abstract][Full Text] [Related]
28. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
29. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance. Liu Y; Yang B; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2017 Dec; 56(52):16606-16610. PubMed ID: 29135065 [TBL] [Abstract][Full Text] [Related]
30. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications. Ko M; Oh P; Chae S; Cho W; Cho J Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922 [TBL] [Abstract][Full Text] [Related]
31. Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries. Ham SY; Sebti E; Cronk A; Pennebaker T; Deysher G; Chen YT; Oh JAS; Lee JB; Song MS; Ridley P; Tan DHS; Clément RJ; Jang J; Meng YS Nat Commun; 2024 Apr; 15(1):2991. PubMed ID: 38582753 [TBL] [Abstract][Full Text] [Related]
32. Controlled Prelithiation of SnO Li F; Wang G; Zheng D; Zhang X; Abegglen CJ; Qu H; Qu D ACS Appl Mater Interfaces; 2020 Apr; 12(17):19423-19430. PubMed ID: 32264670 [TBL] [Abstract][Full Text] [Related]
33. Prelithiation Activates Li(Ni0.5Mn0.3Co0.2)O2 for High Capacity and Excellent Cycling Stability. Wu Z; Ji S; Zheng J; Hu Z; Xiao S; Wei Y; Zhuo Z; Lin Y; Yang W; Xu K; Amine K; Pan F Nano Lett; 2015 Aug; 15(8):5590-6. PubMed ID: 26182195 [TBL] [Abstract][Full Text] [Related]
34. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors. Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417 [TBL] [Abstract][Full Text] [Related]
35. High Performance Lithium-Ion Hybrid Capacitors Employing Fe Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525 [TBL] [Abstract][Full Text] [Related]
36. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries. Zhao H; Fu Y; Ling M; Jia Z; Song X; Chen Z; Lu J; Amine K; Liu G ACS Appl Mater Interfaces; 2016 Jun; 8(21):13373-7. PubMed ID: 27160017 [TBL] [Abstract][Full Text] [Related]
37. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. Liu D; Liu ZJ; Li X; Xie W; Wang Q; Liu Q; Fu Y; He D Small; 2017 Dec; 13(45):. PubMed ID: 29024532 [TBL] [Abstract][Full Text] [Related]
39. Controlled Prelithiation of Silicon Monoxide for High Performance Lithium-Ion Rechargeable Full Cells. Kim HJ; Choi S; Lee SJ; Seo MW; Lee JG; Deniz E; Lee YJ; Kim EK; Choi JW Nano Lett; 2016 Jan; 16(1):282-8. PubMed ID: 26694703 [TBL] [Abstract][Full Text] [Related]
40. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. Yue H; Zhang S; Feng T; Chen C; Zhou H; Xu Z; Wu M ACS Appl Mater Interfaces; 2021 Nov; 13(45):53996-54004. PubMed ID: 34732046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]