These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35680860)

  • 1. Learning emergent partial differential equations in a learned emergent space.
    Kemeth FP; Bertalan T; Thiem T; Dietrich F; Moon SJ; Laing CR; Kevrekidis IG
    Nat Commun; 2022 Jun; 13(1):3318. PubMed ID: 35680860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global and local reduced models for interacting, heterogeneous agents.
    Thiem TN; Kemeth FP; Bertalan T; Laing CR; Kevrekidis IG
    Chaos; 2021 Jul; 31(7):073139. PubMed ID: 34340348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning spatio-temporal patterns with Neural Cellular Automata.
    Richardson AD; Antal T; Blythe RA; Schumacher LJ
    PLoS Comput Biol; 2024 Apr; 20(4):e1011589. PubMed ID: 38669297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learn bifurcations of nonlinear parametric systems via equation-driven neural networks.
    Hao W; Zheng C
    Chaos; 2022 Jan; 32(1):011102. PubMed ID: 35105140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning.
    Kemeth FP; Haugland SW; Dietrich F; Bertalan T; Höhlein K; Li Q; Bollt EM; Talmon R; Krischer K; Kevrekidis IG
    IEEE Access; 2018; 6():77402-77413. PubMed ID: 31179198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator.
    Gallos IK; Lehmberg D; Dietrich F; Siettos C
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.
    Siettos C; Starke J
    Wiley Interdiscip Rev Syst Biol Med; 2016 Sep; 8(5):438-58. PubMed ID: 27340949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into oscillator network dynamics using a phase-isostable framework.
    Nicks R; Allen R; Coombes S
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38271631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
    Lee S; Psarellis YM; Siettos CI; Kevrekidis IG
    J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations.
    Linot AJ; Graham MD
    Chaos; 2022 Jul; 32(7):073110. PubMed ID: 35907719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data-driven discovery of Green's functions with human-understandable deep learning.
    Boullé N; Earls CJ; Townsend A
    Sci Rep; 2022 Mar; 12(1):4824. PubMed ID: 35319007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Geometry Methods for Constructing Manifold-Targeted Recurrent Neural Networks.
    Claudi F; Branco T
    Neural Comput; 2022 Jul; 34(8):1790-1811. PubMed ID: 35798324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven discovery of coordinates and governing equations.
    Champion K; Lusch B; Kutz JN; Brunton SL
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks.
    Smith LD; Gottwald GA
    Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biologically-informed neural networks guide mechanistic modeling from sparse experimental data.
    Lagergren JH; Nardini JT; Baker RE; Simpson MJ; Flores KB
    PLoS Comput Biol; 2020 Dec; 16(12):e1008462. PubMed ID: 33259472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning epidemic threshold in complex networks by Convolutional Neural Network.
    Ni Q; Kang J; Tang M; Liu Y; Zou Y
    Chaos; 2019 Nov; 29(11):113106. PubMed ID: 31779342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Hidden Symmetries.
    Liu Z; Tegmark M
    Phys Rev Lett; 2022 May; 128(18):180201. PubMed ID: 35594106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.