BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35680862)

  • 1. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints.
    Jamsen JA; Shock DD; Wilson SH
    Nat Commun; 2022 Jun; 13(1):3193. PubMed ID: 35680862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observing a DNA polymerase choose right from wrong.
    Freudenthal BD; Beard WA; Shock DD; Wilson SH
    Cell; 2013 Jul; 154(1):157-68. PubMed ID: 23827680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis.
    Brown JA; Pack LR; Sanman LE; Suo Z
    DNA Repair (Amst); 2011 Jan; 10(1):24-33. PubMed ID: 20961817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection.
    Radhakrishnan R; Arora K; Wang Y; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2006 Dec; 45(51):15142-56. PubMed ID: 17176036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA polymerase β: Closing the gap between structure and function.
    Beard WA
    DNA Repair (Amst); 2020 Sep; 93():102910. PubMed ID: 33087276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.
    Sampoli Benítez BA; Arora K; Balistreri L; Schlick T
    J Mol Biol; 2008 Dec; 384(5):1086-97. PubMed ID: 18955064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying the beta,gamma leaving-group bridging oxygen alters nucleotide incorporation efficiency, fidelity, and the catalytic mechanism of DNA polymerase beta.
    Sucato CA; Upton TG; Kashemirov BA; Batra VK; Martínek V; Xiang Y; Beard WA; Pedersen LC; Wilson SH; McKenna CE; Florián J; Warshel A; Goodman MF
    Biochemistry; 2007 Jan; 46(2):461-71. PubMed ID: 17209556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
    Jamsen JA; Beard WA; Pedersen LC; Shock DD; Moon AF; Krahn JM; Bebenek K; Kunkel TA; Wilson SH
    Nat Commun; 2017 Aug; 8(1):253. PubMed ID: 28811466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism.
    Batra VK; Beard WA; Pedersen LC; Wilson SH
    Structure; 2016 Nov; 24(11):1863-1875. PubMed ID: 27642161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide.
    Jamsen JA; Sassa A; Shock DD; Beard WA; Wilson SH
    Nat Commun; 2021 Apr; 12(1):2059. PubMed ID: 33824325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. I260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity.
    Liptak C; Mahmoud MM; Eckenroth BE; Moreno MV; East K; Alnajjar KS; Huang J; Towle-Weicksel JB; Doublié S; Loria JP; Sweasy JB
    Nucleic Acids Res; 2018 Nov; 46(20):10740-10756. PubMed ID: 30239932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady-state kinetic studies of the fidelity and mechanism of polymerization catalyzed by truncated human DNA polymerase lambda.
    Fiala KA; Abdel-Gawad W; Suo Z
    Biochemistry; 2004 Jun; 43(21):6751-62. PubMed ID: 15157109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between conformational changes in pol lambda's active site upon binding incorrect nucleotides and mismatch incorporation rates.
    Foley MC; Schlick T
    J Phys Chem B; 2009 Oct; 113(39):13035-47. PubMed ID: 19572669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ.
    Brown JA; Pack LR; Sherrer SM; Kshetry AK; Newmister SA; Fowler JD; Taylor JS; Suo Z
    J Mol Biol; 2010 Nov; 403(4):505-15. PubMed ID: 20851705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair.
    Kamble P; Hall K; Chandak M; Tang Q; Çağlayan M
    J Biol Chem; 2021; 296():100427. PubMed ID: 33600799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate.
    Batra VK; Beard WA; Shock DD; Pedersen LC; Wilson SH
    Structure; 2005 Aug; 13(8):1225-33. PubMed ID: 16084394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology.
    Garcia-Diaz M; Bebenek K; Krahn JM; Blanco L; Kunkel TA; Pedersen LC
    Mol Cell; 2004 Feb; 13(4):561-72. PubMed ID: 14992725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA polymerase lambda, a novel DNA repair enzyme in human cells.
    García-Díaz M; Bebenek K; Sabariegos R; Domínguez O; Rodríguez J; Kirchhoff T; García-Palomero E; Picher AJ; Juárez R; Ruiz JF; Kunkel TA; Blanco L
    J Biol Chem; 2002 Apr; 277(15):13184-91. PubMed ID: 11821417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.