These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 35680907)
1. Molecularly cleavable bioinks facilitate high-performance digital light processing-based bioprinting of functional volumetric soft tissues. Wang M; Li W; Hao J; Gonzales A; Zhao Z; Flores RS; Kuang X; Mu X; Ching T; Tang G; Luo Z; Garciamendez-Mijares CE; Sahoo JK; Wells MF; Niu G; Agrawal P; Quiñones-Hinojosa A; Eggan K; Zhang YS Nat Commun; 2022 Jun; 13(1):3317. PubMed ID: 35680907 [TBL] [Abstract][Full Text] [Related]
2. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
3. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
4. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Lim KS; Levato R; Costa PF; Castilho MD; Alcala-Orozco CR; van Dorenmalen KMA; Melchels FPW; Gawlitta D; Hooper GJ; Malda J; Woodfield TBF Biofabrication; 2018 May; 10(3):034101. PubMed ID: 29693552 [TBL] [Abstract][Full Text] [Related]
5. Extrusion-Based 3D Bioprinting of Adhesive Tissue Engineering Scaffolds Using Hybrid Functionalized Hydrogel Bioinks. Chen S; Tomov ML; Ning L; Gil CJ; Hwang B; Bauser-Heaton H; Chen H; Serpooshan V Adv Biol (Weinh); 2023 Jul; 7(7):e2300124. PubMed ID: 37132122 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750 [TBL] [Abstract][Full Text] [Related]
7. Peptide-dendrimer-reinforced bioinks for 3D bioprinting of heterogeneous and biomimetic in vitro models. Zhou K; Ding R; Tao X; Cui Y; Yang J; Mao H; Gu Z Acta Biomater; 2023 Oct; 169():243-255. PubMed ID: 37572980 [TBL] [Abstract][Full Text] [Related]
8. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks. Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016 [TBL] [Abstract][Full Text] [Related]
9. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
11. Blends of gelatin and hyaluronic acid stratified by stereolithographic bioprinting approximate cartilaginous matrix gradients. Shopperly LK; Spinnen J; Krüger JP; Endres M; Sittinger M; Lam T; Kloke L; Dehne T J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2310-2322. PubMed ID: 35532378 [TBL] [Abstract][Full Text] [Related]
12. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
13. Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks. Liu W; Heinrich MA; Zhou Y; Akpek A; Hu N; Liu X; Guan X; Zhong Z; Jin X; Khademhosseini A; Zhang YS Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28464555 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-Stabilized Emulsion Bioink for Digital Light Processing Based 3D Bioprinting of Porous Tissue Constructs. Tao J; Zhu S; Zhou N; Wang Y; Wan H; Zhang L; Tang Y; Pan Y; Yang Y; Zhang J; Liu R Adv Healthc Mater; 2022 Jun; 11(12):e2102810. PubMed ID: 35194975 [TBL] [Abstract][Full Text] [Related]
16. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity. Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746 [TBL] [Abstract][Full Text] [Related]
17. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds. Yang J; Li Z; Li S; Zhang Q; Zhou X; He C Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864 [TBL] [Abstract][Full Text] [Related]
18. Infiltration from Suspension Systems Enables Effective Modulation of 3D Scaffold Properties in Suspension Bioprinting. Wang C; Honiball JR; Lin J; Xia X; Lau DSA; Chen B; Deng L; Lu WW ACS Appl Mater Interfaces; 2022 Jun; 14(24):27575-27588. PubMed ID: 35674114 [TBL] [Abstract][Full Text] [Related]
19. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Martyniak K; Lokshina A; Cruz MA; Karimzadeh M; Kemp R; Kean TJ Acta Biomater; 2022 Oct; 152():221-234. PubMed ID: 36049623 [TBL] [Abstract][Full Text] [Related]
20. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Skardal A; Devarasetty M; Kang HW; Mead I; Bishop C; Shupe T; Lee SJ; Jackson J; Yoo J; Soker S; Atala A Acta Biomater; 2015 Oct; 25():24-34. PubMed ID: 26210285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]