These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 35680968)

  • 1. A new generative adversarial network for medical images super resolution.
    Ahmad W; Ali H; Shah Z; Azmat S
    Sci Rep; 2022 Jun; 12(1):9533. PubMed ID: 35680968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network.
    U N; P M A
    Magn Reson Imaging; 2024 Jul; 110():195-209. PubMed ID: 38653336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution of brain tumor MRI images based on deep learning.
    Zhou Z; Ma A; Feng Q; Wang R; Cheng L; Chen X; Yang X; Liao K; Miao Y; Qiu Y
    J Appl Clin Med Phys; 2022 Nov; 23(11):e13758. PubMed ID: 36107021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception-oriented generative adversarial network for retinal fundus image super-resolution.
    Zhao L; Chi H; Zhong T; Jia Y
    Comput Biol Med; 2024 Jan; 168():107708. PubMed ID: 37995535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution.
    Jiang M; Zhi M; Wei L; Yang X; Zhang J; Li Y; Wang P; Huang J; Yang G
    Comput Med Imaging Graph; 2021 Sep; 92():101969. PubMed ID: 34411966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
    Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved generative adversarial network for retinal image super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 Oct; 225():106995. PubMed ID: 35970055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution of cardiac magnetic resonance images using Laplacian Pyramid based on Generative Adversarial Networks.
    Zhao M; Liu X; Liu H; Wong KKL
    Comput Med Imaging Graph; 2020 Mar; 80():101698. PubMed ID: 31935666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Image super-resolution using progressive generative adversarial networks for medical image analysis.
    Mahapatra D; Bozorgtabar B; Garnavi R
    Comput Med Imaging Graph; 2019 Jan; 71():30-39. PubMed ID: 30472408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generative Adversarial Network for Medical Images (MI-GAN).
    Iqbal T; Ali H
    J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arbitrary Scale Super-Resolution for Medical Images.
    Zhu J; Tan C; Yang J; Yang G; Lio' P
    Int J Neural Syst; 2021 Oct; 31(10):2150037. PubMed ID: 34304719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
    Wu Y; Yang F; Huang J; Liu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal image synthesis from multiple-landmarks input with generative adversarial networks.
    Yu Z; Xiang Q; Meng J; Kou C; Ren Q; Lu Y
    Biomed Eng Online; 2019 May; 18(1):62. PubMed ID: 31113438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback attention network for cardiac magnetic resonance imaging super-resolution.
    Zhu D; He H; Wang D
    Comput Methods Programs Biomed; 2023 Apr; 231():107313. PubMed ID: 36739626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-resolution reconstruction of MR image with a novel residual learning network algorithm.
    Shi J; Liu Q; Wang C; Zhang Q; Ying S; Xu H
    Phys Med Biol; 2018 Apr; 63(8):085011. PubMed ID: 29583134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.