BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 35680998)

  • 1. A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution.
    Grau-Bové X; Navarrete C; Chiva C; Pribasnig T; Antó M; Torruella G; Galindo LJ; Lang BF; Moreira D; López-Garcia P; Ruiz-Trillo I; Schleper C; Sabidó E; Sebé-Pedrós A
    Nat Ecol Evol; 2022 Jul; 6(7):1007-1023. PubMed ID: 35680998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosomes at the Dawn of Eukaryotes.
    Hocher A; Warnecke T
    Genome Biol Evol; 2024 Mar; 16(3):. PubMed ID: 38366053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone variants in archaea and the evolution of combinatorial chromatin complexity.
    Stevens KM; Swadling JB; Hocher A; Bang C; Gribaldo S; Schmitz RA; Warnecke T
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33384-33395. PubMed ID: 33288720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes.
    Iyer LM; Anantharaman V; Wolf MY; Aravind L
    Int J Parasitol; 2008 Jan; 38(1):1-31. PubMed ID: 17949725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Archaeal DNA on the histone merry-go-round.
    Bhattacharyya S; Mattiroli F; Luger K
    FEBS J; 2018 Sep; 285(17):3168-3174. PubMed ID: 29729078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evolutionary history of histone H3 suggests a deep eukaryotic root of chromatin modifying mechanisms.
    Postberg J; Forcob S; Chang WJ; Lipps HJ
    BMC Evol Biol; 2010 Aug; 10():259. PubMed ID: 20738881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein.
    Dulmage KA; Todor H; Schmid AK
    mBio; 2015 Sep; 6(5):e00649-15. PubMed ID: 26350964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Archaeal chromatin 'slinkies' are inherently dynamic complexes with deflected DNA wrapping pathways.
    Bowerman S; Wereszczynski J; Luger K
    Elife; 2021 Mar; 10():. PubMed ID: 33650488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal ancestors of eukaryotes: not so elusive any more.
    Koonin EV
    BMC Biol; 2015 Oct; 13():84. PubMed ID: 26437773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin is an ancient innovation conserved between Archaea and Eukarya.
    Ammar R; Torti D; Tsui K; Gebbia M; Durbic T; Bader GD; Giaever G; Nislow C
    Elife; 2012 Dec; 1():e00078. PubMed ID: 23240084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone variants in archaea - An undiscovered country.
    Stevens KM; Warnecke T
    Semin Cell Dev Biol; 2023 Feb; 135():50-58. PubMed ID: 35221208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of chromosomal histones in a 30S ribosomal protein.
    Bozorgmehr JH
    Gene; 2020 Feb; 726():144155. PubMed ID: 31629821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archaeal histone distribution is associated with archaeal genome base composition.
    Nishida H; Oshima T
    J Gen Appl Microbiol; 2017 Mar; 63(1):28-35. PubMed ID: 27990001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier?
    Koonin EV
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1678):20140333. PubMed ID: 26323764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The archaeal legacy of eukaryotes: a phylogenomic perspective.
    Guy L; Saw JH; Ettema TJ
    Cold Spring Harb Perspect Biol; 2014 Jul; 6(10):a016022. PubMed ID: 24993577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserved substitution patterns around nucleosome footprints in eukaryotes and Archaea derive from frequent nucleosome repositioning through evolution.
    Warnecke T; Becker EA; Facciotti MT; Nislow C; Lehner B
    PLoS Comput Biol; 2013; 9(11):e1003373. PubMed ID: 24278010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TCA cycle signalling and the evolution of eukaryotes.
    Ryan DG; Frezza C; O'Neill LA
    Curr Opin Biotechnol; 2021 Apr; 68():72-88. PubMed ID: 33137653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asgard archaea illuminate the origin of eukaryotic cellular complexity.
    Zaremba-Niedzwiedzka K; Caceres EF; Saw JH; Bäckström D; Juzokaite L; Vancaester E; Seitz KW; Anantharaman K; Starnawski P; Kjeldsen KU; Stott MB; Nunoura T; Banfield JF; Schramm A; Baker BJ; Spang A; Ettema TJ
    Nature; 2017 Jan; 541(7637):353-358. PubMed ID: 28077874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial Genes Outnumber Archaeal Genes in Eukaryotic Genomes.
    Brueckner J; Martin WF
    Genome Biol Evol; 2020 Apr; 12(4):282-292. PubMed ID: 32142116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes.
    Makarova KS; Koonin EV; Kelman Z
    Biol Direct; 2012 Feb; 7():7. PubMed ID: 22329974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.