BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35681175)

  • 1. Integrated multiomic approach for identification of novel immunotherapeutic targets in AML.
    Köhnke T; Liu X; Haubner S; Bücklein V; Hänel G; Krupka C; Solis-Mezarino V; Herzog F; Subklewe M
    Biomark Res; 2022 Jun; 10(1):43. PubMed ID: 35681175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunotherapeutic targeting of surfaceome heterogeneity in AML.
    Bordeleau ME; Audemard É; Métois A; Theret L; Lisi V; Farah A; Spinella JF; Chagraoui J; Moujaber O; Aubert L; Khakipoor B; Mallinger L; Boivin I; Mayotte N; Hajmirza A; Bonneil É; Béliveau F; Pfammatter S; Feghaly A; Boucher G; Gendron P; Thibault P; Barabé F; Lemieux S; Richard-Carpentier G; Hébert J; Lavallée VP; Roux PP; Sauvageau G
    Cell Rep; 2024 Jun; 43(6):114260. PubMed ID: 38838225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML.
    Perna F; Berman SH; Soni RK; Mansilla-Soto J; Eyquem J; Hamieh M; Hendrickson RC; Brennan CW; Sadelain M
    Cancer Cell; 2017 Oct; 32(4):506-519.e5. PubMed ID: 29017060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia.
    Goswami M; Hourigan CS
    Curr Drug Targets; 2017; 18(3):296-303. PubMed ID: 25706110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia.
    Zhang M; Sukhumalchandra P; Enyenihi AA; St John LS; Hunsucker SA; Mittendorf EA; Sergeeva A; Ruisaard K; Al-Atrache Z; Ropp PA; Jakher H; Rodriguez-Cruz T; Lizee G; Clise-Dwyer K; Lu S; Molldrem JJ; Glish GL; Armistead PM; Alatrash G
    Clin Cancer Res; 2013 Jan; 19(1):247-57. PubMed ID: 23147993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukemia surfaceome analysis reveals new disease-associated features.
    Mirkowska P; Hofmann A; Sedek L; Slamova L; Mejstrikova E; Szczepanski T; Schmitz M; Cario G; Stanulla M; Schrappe M; van der Velden VH; Bornhauser BC; Wollscheid B; Bourquin JP
    Blood; 2013 Jun; 121(25):e149-59. PubMed ID: 23649467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune-Based Therapeutic Interventions for Acute Myeloid Leukemia.
    Perna F; Espinoza-Gutarra MR; Bombaci G; Farag SS; Schwartz JE
    Cancer Treat Res; 2022; 183():225-254. PubMed ID: 35551662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia.
    Greiner J; Ringhoffer M; Simikopinko O; Szmaragowska A; Huebsch S; Maurer U; Bergmann L; Schmitt M
    Exp Hematol; 2000 Dec; 28(12):1413-22. PubMed ID: 11146163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive surface proteome analysis of myeloid leukemia cell lines for therapeutic antibody development.
    Strassberger V; Gutbrodt KL; Krall N; Roesli C; Takizawa H; Manz MG; Fugmann T; Neri D
    J Proteomics; 2014 Mar; 99():138-51. PubMed ID: 24487095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia.
    Wang J; Chen S; Xiao W; Li W; Wang L; Yang S; Wang W; Xu L; Liao S; Liu W; Wang Y; Liu N; Zhang J; Xia X; Kang T; Chen G; Cai X; Yang H; Zhang X; Lu Y; Zhou P
    J Hematol Oncol; 2018 Jan; 11(1):7. PubMed ID: 29316944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of mast cells as a candidate significant target of immunotherapy for acute myeloid leukemia.
    Jia M; Zhang H; Wang L; Zhao L; Fan S; Xi Y
    Hematology; 2021 Dec; 26(1):284-294. PubMed ID: 33648435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design.
    Qin H; Yang L; Chukinas JA; Shah N; Tarun S; Pouzolles M; Chien CD; Niswander LM; Welch AR; Taylor N; Tasian SK; Fry TJ
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34531250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy Against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia.
    Driouk L; Gicobi JK; Kamihara Y; Rutherford K; Dranoff G; Ritz J; Baumeister SHC
    Front Immunol; 2020; 11():580328. PubMed ID: 33384686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia.
    Bakker AB; van den Oudenrijn S; Bakker AQ; Feller N; van Meijer M; Bia JA; Jongeneelen MA; Visser TJ; Bijl N; Geuijen CA; Marissen WE; Radosevic K; Throsby M; Schuurhuis GJ; Ossenkoppele GJ; de Kruif J; Goudsmit J; Kruisbeek AM
    Cancer Res; 2004 Nov; 64(22):8443-50. PubMed ID: 15548716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute Myeloid Leukemia Expresses a Specific Group of Olfactory Receptors.
    Guardia GDA; Naressi RG; Buzzato VC; da Costa JB; Zalcberg I; Ramires J; Malnic B; Gutiyama LM; Galante PAF
    Cancers (Basel); 2023 Jun; 15(12):. PubMed ID: 37370684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing Role of Targeted Immunotherapies in the Treatment of AML.
    Greiner J; Götz M; Wais V
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landscape of surfaceome and endocytome in human glioma is divergent and depends on cellular spatial organization.
    Governa V; Talbot H; Gonçalves de Oliveira K; Cerezo-Magaña M; Bång-Rudenstam A; Johansson MC; Månsson AS; Forsberg-Nilsson K; Marko-Varga G; Enríquez Pérez J; Darabi A; Malmström J; Bengzon J; Welinder C; Belting M
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35217608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML.
    Zhang J; Qi L; Wang T; An J; Zhou B; Fang Y; Liu Y; Shan M; Hong D; Wu D; Xu Y; Liu T
    Front Oncol; 2022; 12():890346. PubMed ID: 35875066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Reprogramming Allows Generation of Autologous Hematopoietic Progenitors From AML Patients That Are Devoid of Patient-Specific Genomic Aberrations.
    Salci KR; Lee JH; Laronde S; Dingwall S; Kushwah R; Fiebig-Comyn A; Leber B; Foley R; Dal Cin A; Bhatia M
    Stem Cells; 2015 Jun; 33(6):1839-49. PubMed ID: 25764124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proteogenomic surfaceome study identifies DLK1 as an immunotherapeutic target in neuroblastoma.
    Weiner AK; Radaoui AB; Tsang M; Martinez D; Sidoli S; Conkrite KL; Delaidelli A; Modi A; Rokita JL; Patel K; Lane MV; Zhang B; Zhong C; Ennis B; Miller DP; Brown MA; Rathi KS; Raman P; Pogoriler J; Bhatti T; Pawel B; Glisovic-Aplenc T; Teicher B; Erickson SW; Earley EJ; Bosse KR; Sorensen PH; Krytska K; Mosse YP; Havenith KE; Zammarchi F; van Berkel PH; Smith MA; Garcia BA; Maris JM; Diskin SJ
    bioRxiv; 2024 Jan; ():. PubMed ID: 38106022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.