BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 3568130)

  • 1. Control of plastid gene expression during development: the limited role of transcriptional regulation.
    Deng XW; Gruissem W
    Cell; 1987 May; 49(3):379-87. PubMed ID: 3568130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastid run-on transcription. Application to determine the transcriptional regulation of spinach plastid genes.
    Deng XW; Stern DB; Tonkyn JC; Gruissem W
    J Biol Chem; 1987 Jul; 262(20):9641-8. PubMed ID: 3597430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-transcriptional control of plastid mRNA accumulation during adaptation of chloroplasts to different light quality environments.
    Deng XW; Tonkyn JC; Peter GF; Thornber JP; Gruissem W
    Plant Cell; 1989 Jun; 1(6):645-54. PubMed ID: 2535516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplast transcription is required to express the nuclear genes rbcS and cab. Plastid DNA copy number is regulated independently.
    Rapp JC; Mullet JE
    Plant Mol Biol; 1991 Oct; 17(4):813-23. PubMed ID: 1912500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription.
    Stern DB; Gruissem W
    Cell; 1987 Dec; 51(6):1145-57. PubMed ID: 3690662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromoplast formation during tomato fruit ripening. No evidence for plastid DNA methylation.
    Marano MR; Carrillo N
    Plant Mol Biol; 1991 Jan; 16(1):11-9. PubMed ID: 1653626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis.
    Qiao J; Ma C; Wimmelbacher M; Börnke F; Luo M
    Plant Cell Physiol; 2011 Jun; 52(6):1017-30. PubMed ID: 21515910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.
    Yerramsetty P; Stata M; Siford R; Sage TL; Sage RF; Wong GK; Albert VA; Berry JO
    BMC Evol Biol; 2016 Jun; 16(1):141. PubMed ID: 27356975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of transcription rates in Arabidopsis chloroplasts.
    Zubo YO; Börner T; Liere K
    Methods Mol Biol; 2011; 774():171-82. PubMed ID: 21822839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constancy of organellar genome copy numbers during leaf development and senescence in higher plants.
    Li W; Ruf S; Bock R
    Mol Genet Genomics; 2006 Feb; 275(2):185-92. PubMed ID: 16308694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of nuclear and chloroplast gene expression in plant cells.
    Goldschmidt-Clermont M
    Int Rev Cytol; 1998; 177():115-80. PubMed ID: 9378616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMB2738, which encodes a putative plastid-targeted GTP-binding protein, is essential for embryogenesis and chloroplast development in higher plants.
    Ye LS; Zhang Q; Pan H; Huang C; Yang ZN; Yu QB
    Physiol Plant; 2017 Nov; 161(3):414-430. PubMed ID: 28675462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and expression of the nuclear gene coding for the plastid CS1 ribosomal protein from spinach.
    Franzetti B; Zhou DX; Mache R
    Nucleic Acids Res; 1992 Aug; 20(16):4153-7. PubMed ID: 1508710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chloroplast development affects expression of phage-type RNA polymerases in barley leaves.
    Emanuel C; Weihe A; Graner A; Hess WR; Börner T
    Plant J; 2004 May; 38(3):460-72. PubMed ID: 15086795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the plastid-specific germination and seedling establishment transcriptional programme.
    Demarsy E; Buhr F; Lambert E; Lerbs-Mache S
    J Exp Bot; 2012 Jan; 63(2):925-39. PubMed ID: 22048039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The implication of a plastid-derived factor in the transcriptional control of nuclear genes encoding the light-harvesting chlorophyll a/b protein.
    Batschauer A; Mösinger E; Kreuz K; Dörr I; Apel K
    Eur J Biochem; 1986 Feb; 154(3):625-34. PubMed ID: 2868896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional and post-transcriptional control of plastid mRNA levels in higher plants.
    Gruissem W; Barkan A; Deng XW; Stern D
    Trends Genet; 1988 Sep; 4(9):258-63. PubMed ID: 3070872
    [No Abstract]   [Full Text] [Related]  

  • 18. Plastid RNA polymerases: orchestration of enzymes with different evolutionary origins controls chloroplast biogenesis during the plant life cycle.
    Pfannschmidt T; Blanvillain R; Merendino L; Courtois F; Chevalier F; Liebers M; Grübler B; Hommel E; Lerbs-Mache S
    J Exp Bot; 2015 Dec; 66(22):6957-73. PubMed ID: 26355147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transcriptionally active DNA-protein complexes from chloroplasts and etioplasts of mustard (Sinapis alba L.).
    Reiss T; Link G
    Eur J Biochem; 1985 Apr; 148(2):207-12. PubMed ID: 2580705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the ionic environment on the in vitro transcription of the spinach plastid DNA by a selectively bound RNA-polymerase DNA complex.
    Blanc M; Briat JF; Laulhere JP
    Biochim Biophys Acta; 1981 Oct; 655(3):374-82. PubMed ID: 7284393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.