These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35682208)

  • 41. Short-term effects of meteorological factors on hand, foot and mouth disease among children in Shenzhen, China: Non-linearity, threshold and interaction.
    Zhang Z; Xie X; Chen X; Li Y; Lu Y; Mei S; Liao Y; Lin H
    Sci Total Environ; 2016 Jan; 539():576-582. PubMed ID: 26386448
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The association between air pollutants, meteorological factors and tuberculosis cases in Beijing, China: A seven-year time series study.
    Sun S; Chang Q; He J; Wei X; Sun H; Xu Y; Soares Magalhaes RJ; Guo Y; Cui Z; Zhang W
    Environ Res; 2023 Jan; 216(Pt 2):114581. PubMed ID: 36244443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Epidemiological characteristics of severe fever with thrombocytopenia syndrome and its relationship with meteorological factors in Liaoning Province, China.
    Wang Z; Yang S; Luo L; Guo X; Deng B; Zhao Z; Rui J; Yu S; Zhao B; Wang Y; Chen J; Sun Y; Chen T; Feng X
    Parasit Vectors; 2022 Aug; 15(1):283. PubMed ID: 35933453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influence and prediction of meteorological factors on brucellosis in a northwest region of China.
    Zheng H; Liu D; Zhao X; Zhao X; Liu Y; Li D; Shi T; Ren X
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):9962-9973. PubMed ID: 36064850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The association between the incidence of mumps and meteorological parameters in Taiwan.
    Ho YC; Su BH; Su HJ; Chang HL; Lin CY; Chen H; Chen KT
    Hum Vaccin Immunother; 2015; 11(6):1406-12. PubMed ID: 25891825
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Application of multiple seasonal autoregressive integrated moving average model in predicting the mumps incidence].
    Hui S; Chen L; Liu F; Ouyang Y
    Zhonghua Yu Fang Yi Xue Za Zhi; 2015 Dec; 49(12):1042-6. PubMed ID: 26887296
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Epidemiological Characteristics and Spatiotemporal Analysis of Mumps from 2004 to 2018 in Chongqing, China.
    Zhu H; Zhao H; Ou R; Xiang H; Hu L; Jing D; Sharma M; Ye M
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31443544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epidemiological characteristics of bacillary dysentery from 2009 to 2016 and its incidence prediction model based on meteorological factors.
    Meng Q; Liu X; Xie J; Xiao D; Wang Y; Deng D
    Environ Health Prev Med; 2019 Dec; 24(1):82. PubMed ID: 31883513
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet.
    Huang F; Zhou S; Zhang S; Wang H; Tang L
    Malar J; 2011 Mar; 10():54. PubMed ID: 21375751
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Meteorological variables and bacillary dysentery cases in Changsha City, China.
    Gao L; Zhang Y; Ding G; Liu Q; Zhou M; Li X; Jiang B
    Am J Trop Med Hyg; 2014 Apr; 90(4):697-704. PubMed ID: 24591435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term air pollution levels modify the relationships between short-term exposure to meteorological factors, air pollution and the incidence of hand, foot and mouth disease in children: a DLNM-based multicity time series study in Sichuan Province, China.
    Luo C; Qian J; Liu Y; Lv Q; Ma Y; Yin F
    BMC Public Health; 2022 Aug; 22(1):1484. PubMed ID: 35927638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis.
    Liu Z; Meng Y; Xiang H; Lu Y; Liu S
    Int J Environ Res Public Health; 2020 Oct; 17(21):. PubMed ID: 33143315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Analysis on association between incidence of hand foot and mouth disease and meteorological factors in Xiamen, 2013-2017].
    Zhu HS; Chen S; Wang MZ; Ou JM; Xie ZH; Huang WL; Lin JW; Ye WJ
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 May; 40(5):531-536. PubMed ID: 31177733
    [No Abstract]   [Full Text] [Related]  

  • 54. Intracerebral hemorrhage and meteorological factors in Chongqing, in the southwest of China.
    Li X; Zhang JH; Qin X
    Acta Neurochir Suppl; 2011; 111():321-5. PubMed ID: 21725775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China.
    Liu W; Bao C; Zhou Y; Ji H; Wu Y; Shi Y; Shen W; Bao J; Li J; Hu J; Huo X
    BMC Infect Dis; 2019 Oct; 19(1):828. PubMed ID: 31590636
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The temporal lagged association between meteorological factors and malaria in 30 counties in south-west China: a multilevel distributed lag non-linear analysis.
    Zhao X; Chen F; Feng Z; Li X; Zhou XH
    Malar J; 2014 Feb; 13():57. PubMed ID: 24528891
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Typhoid and paratyphoid fever in Yunnan province: distributional patterns and the related meteorological factors].
    Wang LX; Yan MY; Fang LQ; Fu XQ; Wang DC; Sun JL; Cao WC; Zhang J; Kan B
    Zhonghua Liu Xing Bing Xue Za Zhi; 2011 May; 32(5):485-9. PubMed ID: 21569733
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of meteorological factors on the prevalence of porcine pasteurellosis in the southcentral of Mainland China.
    Gao X; Xiao J; Qin H; Cao Z; Wang H
    Prev Vet Med; 2016 Mar; 125():75-81. PubMed ID: 26796426
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Association of meteorological factors with infectious diarrhea incidence in Guangzhou, southern China: A time-series study (2006-2017).
    Wang H; Di B; Zhang T; Lu Y; Chen C; Wang D; Li T; Zhang Z; Yang Z
    Sci Total Environ; 2019 Jul; 672():7-15. PubMed ID: 30954825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines.
    Carvajal TM; Viacrusis KM; Hernandez LFT; Ho HT; Amalin DM; Watanabe K
    BMC Infect Dis; 2018 Apr; 18(1):183. PubMed ID: 29665781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.