BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 35682722)

  • 1. Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications-A Narrative Review.
    Cheng TC; Huang SH; Kao CL; Hsu PC
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle wasting in chronic kidney disease: the emerging role of microRNAs.
    Robinson KA; Baker LA; Graham-Brown MPM; Watson EL
    Nephrol Dial Transplant; 2020 Sep; 35(9):1469-1478. PubMed ID: 31603229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs.
    Solagna F; Tezze C; Lindenmeyer MT; Lu S; Wu G; Liu S; Zhao Y; Mitchell R; Meyer C; Omairi S; Kilic T; Paolini A; Ritvos O; Pasternack A; Matsakas A; Kylies D; Wiesch JSZ; Turner JE; Wanner N; Nair V; Eichinger F; Menon R; Martin IV; Klinkhammer BM; Hoxha E; Cohen CD; Tharaux PL; Boor P; Ostendorf T; Kretzler M; Sandri M; Kretz O; Puelles VG; Patel K; Huber TB
    J Clin Invest; 2021 Jun; 131(11):. PubMed ID: 34060483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of muscle wasting in chronic kidney disease.
    Wang XH; Mitch WE
    Nat Rev Nephrol; 2014 Sep; 10(9):504-16. PubMed ID: 24981816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease.
    Yu R; Chen JA; Xu J; Cao J; Wang Y; Thomas SS; Hu Z
    J Cachexia Sarcopenia Muscle; 2017 Apr; 8(2):327-341. PubMed ID: 27897418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNAs: a new therapeutic frontier for muscle wasting in chronic kidney disease.
    Mak RH; Cheung WW
    Kidney Int; 2012 Aug; 82(4):373-4. PubMed ID: 22846810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy.
    Zhang L; Wang XH; Wang H; Du J; Mitch WE
    J Am Soc Nephrol; 2010 Mar; 21(3):419-27. PubMed ID: 20056750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ Crosstalk Contributes to Muscle Wasting in Chronic Kidney Disease.
    Wang XH; Price SR
    Semin Nephrol; 2023 Mar; 43(2):151409. PubMed ID: 37611335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease.
    Mendes S; Leal DV; Baker LA; Ferreira A; Smith AC; Viana JL
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37046990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review of muscle wasting associated with chronic kidney disease.
    Workeneh BT; Mitch WE
    Am J Clin Nutr; 2010 Apr; 91(4):1128S-1132S. PubMed ID: 20181807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factor FoxO1, the dominant mediator of muscle wasting in chronic kidney disease, is inhibited by microRNA-486.
    Xu J; Li R; Workeneh B; Dong Y; Wang X; Hu Z
    Kidney Int; 2012 Aug; 82(4):401-11. PubMed ID: 22475820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor NRF2 as potential therapeutic target for preventing muscle wasting in aging chronic kidney disease patients.
    Gómez-García EF; Del Campo FM; Cortés-Sanabria L; Mendoza-Carrera F; Avesani CM; Stenvinkel P; Lindholm B; Cueto-Manzano AM
    J Nephrol; 2022 Dec; 35(9):2215-2225. PubMed ID: 36322291
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Wang B; Zhang A; Wang H; Klein JD; Tan L; Wang ZM; Du J; Naqvi N; Liu BC; Wang XH
    Theranostics; 2019; 9(7):1864-1877. PubMed ID: 31037144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of endurance training and branched-chain amino acids on the signaling for muscle protein synthesis in CKD model rats fed a low-protein diet.
    Yoshida T; Kakizawa S; Totsuka Y; Sugimoto M; Miura S; Kumagai H
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F805-F814. PubMed ID: 28701315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle wasting from kidney failure-a model for catabolic conditions.
    Wang XH; Mitch WE
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2230-8. PubMed ID: 23872437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA in myogenesis and muscle atrophy.
    Wang XH
    Curr Opin Clin Nutr Metab Care; 2013 May; 16(3):258-66. PubMed ID: 23449000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions.
    Watanabe H; Enoki Y; Maruyama T
    Biol Pharm Bull; 2019; 42(9):1437-1445. PubMed ID: 31474705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle wasting in chronic kidney disease: the role of the ubiquitin proteasome system and its clinical impact.
    Rajan VR; Mitch WE
    Pediatr Nephrol; 2008 Apr; 23(4):527-35. PubMed ID: 17987322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin.
    Thomas SS; Mitch WE
    Clin Exp Nephrol; 2013 Apr; 17(2):174-82. PubMed ID: 23292175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.