These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 35682807)

  • 21. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches.
    Oliveira R; Pinho E; Sousa AL; DeStefano JJ; Azevedo NF; Almeida C
    Trends Biotechnol; 2022 May; 40(5):549-563. PubMed ID: 34756455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment.
    Levay A; Brenneman R; Hoinka J; Sant D; Cardone M; Trinchieri G; Przytycka TM; Berezhnoy A
    Nucleic Acids Res; 2015 Jul; 43(12):e82. PubMed ID: 26007661
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of whole-cell SELEX methods for the identification of Staphylococcus aureus-specific DNA aptamers.
    Moon J; Kim G; Park SB; Lim J; Mo C
    Sensors (Basel); 2015 Apr; 15(4):8884-97. PubMed ID: 25884791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterisation of aptamer-target interactions by branched selection and high-throughput sequencing of SELEX pools.
    Dupont DM; Larsen N; Jensen JK; Andreasen PA; Kjems J
    Nucleic Acids Res; 2015 Dec; 43(21):e139. PubMed ID: 26163061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer.
    Duan Y; Zhang C; Wang Y; Chen G
    Mol Biol Rep; 2022 Aug; 49(8):7979-7993. PubMed ID: 35274201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery.
    Hoinka J; Berezhnoy A; Dao P; Sauna ZE; Gilboa E; Przytycka TM
    Nucleic Acids Res; 2015 Jul; 43(12):5699-707. PubMed ID: 25870409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HAPIscreen, a method for high-throughput aptamer identification.
    Dausse E; Taouji S; Evadé L; Di Primo C; Chevet E; Toulmé JJ
    J Nanobiotechnology; 2011 Jun; 9():25. PubMed ID: 21639912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell-SELEX: in vitro selection of synthetic small specific ligands.
    Dickinson H; Lukasser M; Mayer G; Hüttenhofer A
    Methods Mol Biol; 2015; 1296():213-24. PubMed ID: 25791604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient Screening of Pesticide Diazinon-Binding Aptamers Using the Sol-Gel-Coated Nanoporous Membrane-Assisted SELEX Process and Next-Generation Sequencing.
    Lim MC; Lim ES; Lim JA; Choi SW; Chang HJ
    Appl Biochem Biotechnol; 2022 Sep; 194(9):3901-3913. PubMed ID: 35556210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aptamers: new arrows to target dendritic cells.
    Ganji A; Varasteh A; Sankian M
    J Drug Target; 2016; 24(1):1-12. PubMed ID: 25950603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hi-Fi SELEX: A High-Fidelity Digital-PCR Based Therapeutic Aptamer Discovery Platform.
    Ouellet E; Foley JH; Conway EM; Haynes C
    Biotechnol Bioeng; 2015 Aug; 112(8):1506-22. PubMed ID: 25727321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A two-step stimulus-response cell-SELEX method to generate a DNA aptamer to recognize inflamed human aortic endothelial cells as a potential in vivo molecular probe for atherosclerosis plaque detection.
    Ji K; Lim WS; Li SF; Bhakoo K
    Anal Bioanal Chem; 2013 Aug; 405(21):6853-61. PubMed ID: 23842900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selection and Identification of Chloramphenicol-Specific DNA Aptamers by Mag-SELEX.
    Duan Y; Gao Z; Wang L; Wang H; Zhang H; Li H
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1644-1656. PubMed ID: 27613616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-Domain.
    Schilling KB; DeGrasse J; Woods JW
    Food Chem; 2018 Aug; 258():129-136. PubMed ID: 29655714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Searching the Sequence Space for Potent Aptamers Using SELEX in Silico.
    Zhou Q; Xia X; Luo Z; Liang H; Shakhnovich E
    J Chem Theory Comput; 2015 Dec; 11(12):5939-46. PubMed ID: 26642994
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro selection and characterization of a DNA aptamer targeted to Prorocentrum minimum-A common harmful algae.
    Liu F; Zhang C; Duan Y; Ma J; Wang Y; Chen G
    Sci Total Environ; 2022 Jul; 830():154771. PubMed ID: 35339548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Target Affinity and Structural Analysis for a Selection of Norovirus Aptamers.
    Schilling-Loeffler K; Rodriguez R; Williams-Woods J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Bioinformatics of Aptamers: HT-SELEX Analysis with AptaSUITE.
    Hoinka J; Przytycka TM
    Methods Mol Biol; 2023; 2570():73-83. PubMed ID: 36156775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of Specific Aptamers.
    Liu S; Suzuki Y; Inui M
    Methods Mol Biol; 2018; 1868():113-121. PubMed ID: 30244458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MPBind: a Meta-motif-based statistical framework and pipeline to Predict Binding potential of SELEX-derived aptamers.
    Jiang P; Meyer S; Hou Z; Propson NE; Soh HT; Thomson JA; Stewart R
    Bioinformatics; 2014 Sep; 30(18):2665-7. PubMed ID: 24872422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.