BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35682854)

  • 1. Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids.
    Bowater RP; Bohálová N; Brázda V
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted repeats, stem-loops, and cruciforms: significance for initiation of DNA replication.
    Pearson CE; Zorbas H; Price GB; Zannis-Hadjopoulos M
    J Cell Biochem; 1996 Oct; 63(1):1-22. PubMed ID: 8891900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cruciform structures are a common DNA feature important for regulating biological processes.
    Brázda V; Laister RC; Jagelská EB; Arrowsmith C
    BMC Mol Biol; 2011 Aug; 12():33. PubMed ID: 21816114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palindrome analyser - A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences.
    Brázda V; Kolomazník J; Lýsek J; Hároníková L; Coufal J; Št'astný J
    Biochem Biophys Res Commun; 2016 Sep; 478(4):1739-45. PubMed ID: 27603574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA inverted repeats and human disease.
    Bissler JJ
    Front Biosci; 1998 Mar; 3():d408-18. PubMed ID: 9516381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cruciform-forming inverted repeats appear to have mediated many of the microinversions that distinguish the human and chimpanzee genomes.
    Kolb J; Chuzhanova NA; Högel J; Vasquez KM; Cooper DN; Bacolla A; Kehrer-Sawatzki H
    Chromosome Res; 2009; 17(4):469-83. PubMed ID: 19475482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells.
    Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses.
    Miura O; Ogake T; Ohyama T
    Curr Genet; 2018 Aug; 64(4):945-958. PubMed ID: 29484452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential binding of p53 tumor suppressor to p21 promoter sites that contain inverted repeats capable of forming cruciform structure.
    Coufal J; Jagelská EB; Liao JC; Brázda V
    Biochem Biophys Res Commun; 2013 Nov; 441(1):83-8. PubMed ID: 24134839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of the cruciform structure formation as an important factor influencing p53 sequence-specific binding to natural DNA targets.
    Jagelská EB; Pivonková H; Fojta M; Brázda V
    Biochem Biophys Res Commun; 2010 Jan; 391(3):1409-14. PubMed ID: 20026061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural parameters of palindromic repeats determine the specificity of nuclease attack of secondary structures.
    Ait Saada A; Costa AB; Sheng Z; Guo W; Haber JE; Lobachev KS
    Nucleic Acids Res; 2021 Apr; 49(7):3932-3947. PubMed ID: 33772579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells.
    Holkers M; de Vries AA; Gonçalves MA
    Nucleic Acids Res; 2012 Mar; 40(5):1984-99. PubMed ID: 22080552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interarm interaction of DNA cruciform forming at a short inverted repeat sequence.
    Kato M; Hokabe S; Itakura S; Minoshima S; Lyubchenko YL; Gurkov TD; Okawara H; Nagayama K; Shimizu N
    Biophys J; 2003 Jul; 85(1):402-8. PubMed ID: 12829494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cruciform-dumbbell model for inverted dimer formation mediated by inverted repeats.
    Lin CT; Lyu YL; Liu LF
    Nucleic Acids Res; 1997 Aug; 25(15):3009-16. PubMed ID: 9224600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and dynamics of supercoil-stabilized DNA cruciforms.
    Shlyakhtenko LS; Potaman VN; Sinden RR; Lyubchenko YL
    J Mol Biol; 1998 Jul; 280(1):61-72. PubMed ID: 9653031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cruciform DNA Structures Act as Legible Templates for Accelerating Homologous Recombination in Transgenic Animals.
    Ou-Yang H; Yang SH; Chen W; Yang SH; Cidem A; Sung LY; Chen CM
    Int J Mol Sci; 2022 Apr; 23(7):. PubMed ID: 35409332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo.
    Sinden RR; Zheng GX; Brankamp RG; Allen KN
    Genetics; 1991 Dec; 129(4):991-1005. PubMed ID: 1783300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.