These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35682899)
1. Characterisation of LTR-Retrotransposons of Simoni S; Clemente C; Usai G; Vangelisti A; Natali L; Tavarini S; Angelini LG; Cavallini A; Mascagni F; Giordani T Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35682899 [No Abstract] [Full Text] [Related]
2. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. Vangelisti A; Simoni S; Usai G; Ventimiglia M; Natali L; Cavallini A; Mascagni F; Giordani T BMC Plant Biol; 2021 May; 21(1):221. PubMed ID: 34000996 [TBL] [Abstract][Full Text] [Related]
3. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. Qiu F; Ungerer MC BMC Plant Biol; 2018 Jan; 18(1):6. PubMed ID: 29304730 [TBL] [Abstract][Full Text] [Related]
4. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. Thomas-Bulle C; Piednoël M; Donnart T; Filée J; Jollivet D; Bonnivard É BMC Genomics; 2018 Nov; 19(1):821. PubMed ID: 30442098 [TBL] [Abstract][Full Text] [Related]
5. LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species. Lee SI; Kim JH; Park KC; Kim NS Genetica; 2015 Jun; 143(3):343-52. PubMed ID: 25787319 [TBL] [Abstract][Full Text] [Related]
6. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species. Ma B; Kuang L; Xin Y; He N Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30970574 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
8. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Paz RC; Kozaczek ME; Rosli HG; Andino NP; Sanchez-Puerta MV Genetica; 2017 Oct; 145(4-5):417-430. PubMed ID: 28776161 [TBL] [Abstract][Full Text] [Related]
9. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences. Gao L; McCarthy EM; Ganko EW; McDonald JF BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). Mascagni F; Giordani T; Ceccarelli M; Cavallini A; Natali L BMC Genomics; 2017 Aug; 18(1):634. PubMed ID: 28821238 [TBL] [Abstract][Full Text] [Related]
11. Long Terminal Repeat Retrotransposon Content in Eight Diploid Sunflower Species Inferred from Next-Generation Sequence Data. Tetreault HM; Ungerer MC G3 (Bethesda); 2016 Aug; 6(8):2299-308. PubMed ID: 27233667 [TBL] [Abstract][Full Text] [Related]
12. LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. Wang H; Liu JS BMC Genomics; 2008 Aug; 9():382. PubMed ID: 18691433 [TBL] [Abstract][Full Text] [Related]
13. Retrotransposons in Betula nana, and interspecific relationships in the Betuloideae, based on inter-retrotransposon amplified polymorphism (IRAP) markers. Roy NS; Lee SI; Nkongolo K; Kim NS Genes Genomics; 2018 May; 40(5):511-519. PubMed ID: 29892962 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. Aroh O; Halanych KM BMC Genomics; 2021 Jun; 22(1):466. PubMed ID: 34157969 [TBL] [Abstract][Full Text] [Related]
15. A computational genome-wide analysis of long terminal repeats retrotransposon expression in sunflower roots (Helianthus annuus L.). Mascagni F; Vangelisti A; Usai G; Giordani T; Cavallini A; Natali L Genetica; 2020 Feb; 148(1):13-23. PubMed ID: 31960179 [TBL] [Abstract][Full Text] [Related]
16. The landscape and structural diversity of LTR retrotransposons in Musa genome. Nouroz F; Noreen S; Ahmad H; Heslop-Harrison JSP Mol Genet Genomics; 2017 Oct; 292(5):1051-1067. PubMed ID: 28601922 [TBL] [Abstract][Full Text] [Related]
17. Genetic diversity and population structure of the sweet leaf herb, Stevia rebaudiana B., cultivated and landraces germplasm assessed by EST-SSRs genotyping and steviol glycosides phenotyping. Cosson P; Hastoy C; Errazzu LE; Budeguer CJ; Boutié P; Rolin D; Schurdi-Levraud V BMC Plant Biol; 2019 Oct; 19(1):436. PubMed ID: 31638900 [TBL] [Abstract][Full Text] [Related]
18. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species. Li SF; She HB; Yang LL; Lan LN; Zhang XY; Wang LY; Zhang YL; Li N; Deng CL; Qian W; Gao WJ Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077556 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Ragupathy R; Banks T; Cloutier S Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492 [TBL] [Abstract][Full Text] [Related]
20. Inter-retrotransposon amplified polymorphism markers revealed long terminal repeat retrotransposon insertion polymorphism in flax cultivated on the experimental fields around Chernobyl. Lancíková V; Žiarovská J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(8):957-963. PubMed ID: 32378983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]