These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35682899)
21. LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. Barghini E; Natali L; Giordani T; Cossu RM; Scalabrin S; Cattonaro F; Šimková H; Vrána J; Doležel J; Morgante M; Cavallini A DNA Res; 2015 Feb; 22(1):91-100. PubMed ID: 25428895 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the repetitive component and retrotransposon population in the genome of a marine angiosperm, Posidonia oceanica (L.) Delile. Barghini E; Mascagni F; Natali L; Giordani T; Cavallini A Mar Genomics; 2015 Dec; 24 Pt 3():397-404. PubMed ID: 26472701 [TBL] [Abstract][Full Text] [Related]
23. Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Smýkal P; Kalendar R; Ford R; Macas J; Griga M Heredity (Edinb); 2009 Aug; 103(2):157-67. PubMed ID: 19384338 [TBL] [Abstract][Full Text] [Related]
24. Diversity, dynamics and effects of long terminal repeat retrotransposons in the model grass Brachypodium distachyon. Stritt C; Wyler M; Gimmi EL; Pippel M; Roulin AC New Phytol; 2020 Sep; 227(6):1736-1748. PubMed ID: 31677277 [TBL] [Abstract][Full Text] [Related]
25. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis. da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373 [TBL] [Abstract][Full Text] [Related]
26. Long terminal repeat retrotransposons of Oryza sativa. McCarthy EM; Liu J; Lizhi G; McDonald JF Genome Biol; 2002 Sep; 3(10):RESEARCH0053. PubMed ID: 12372141 [TBL] [Abstract][Full Text] [Related]
27. Full-length LTR retroelements in Capsicum annuum revealed a few species-specific family bursts with insertional preferences. Yañez-Santos AM; Paz RC; Paz-Sepúlveda PB; Urdampilleta JD Chromosome Res; 2021 Dec; 29(3-4):261-284. PubMed ID: 34086192 [TBL] [Abstract][Full Text] [Related]
28. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). Kolano B; Bednara E; Weiss-Schneeweiss H Plant Cell Rep; 2013 Oct; 32(10):1575-88. PubMed ID: 23754338 [TBL] [Abstract][Full Text] [Related]
29. Retrotranspositions in orthologous regions of closely related grass species. Du C; Swigonová Z; Messing J BMC Evol Biol; 2006 Aug; 6():62. PubMed ID: 16914031 [TBL] [Abstract][Full Text] [Related]
30. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome. Ma T; Wei X; Zhang Y; Li J; Wu F; Yan Q; Yan Z; Zhang Z; Kanzana G; Zhao Y; Yang Y; Zhang J J Appl Genet; 2022 Feb; 63(1):61-72. PubMed ID: 34554437 [TBL] [Abstract][Full Text] [Related]
31. Characterization of SR3 reveals abundance of non-LTR retrotransposons of the RTE clade in the genome of the human blood fluke, Schistosoma mansoni. Laha T; Kewgrai N; Loukas A; Brindley PJ BMC Genomics; 2005 Nov; 6():154. PubMed ID: 16271150 [TBL] [Abstract][Full Text] [Related]
32. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome Zhang QJ; Gao LZ G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161 [TBL] [Abstract][Full Text] [Related]
33. Hybridization and polyploidization effects on LTR-retrotransposon activation in potato genome. Gantuz M; Morales A; Bertoldi MV; Ibañez VN; Duarte PF; Marfil CF; Masuelli RW J Plant Res; 2022 Jan; 135(1):81-92. PubMed ID: 34674075 [TBL] [Abstract][Full Text] [Related]
34. Genome relationships and LTR-retrotransposon diversity in three cultivated Capsicum L. (Solanaceae) species. de Assis R; Baba VY; Cintra LA; Gonçalves LSA; Rodrigues R; Vanzela ALL BMC Genomics; 2020 Mar; 21(1):237. PubMed ID: 32183698 [TBL] [Abstract][Full Text] [Related]
35. High-throughput retrotransposon-based genetic diversity of maize germplasm assessment and analysis. Ghonaim M; Kalendar R; Barakat H; Elsherif N; Ashry N; Schulman AH Mol Biol Rep; 2020 Mar; 47(3):1589-1603. PubMed ID: 31919750 [TBL] [Abstract][Full Text] [Related]
36. Identification and characterization of genome-wide long terminal repeat retrotransposons provide an insight into elucidating the trait evolution of five Rhododendron species. Wen S; Zhao H; Qiao G; Shen X Plant Biol (Stuttg); 2023 Aug; 25(5):813-828. PubMed ID: 37128942 [TBL] [Abstract][Full Text] [Related]
37. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006 [TBL] [Abstract][Full Text] [Related]
38. Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L. Jiang S; Zong Y; Yue X; Postman J; Teng Y; Cai D Mol Genet Genomics; 2015 Feb; 290(1):225-37. PubMed ID: 25216935 [TBL] [Abstract][Full Text] [Related]
39. A new look at the LTR retrotransposon content of the chicken genome. Mason AS; Fulton JE; Hocking PM; Burt DW BMC Genomics; 2016 Aug; 17(1):688. PubMed ID: 27577548 [TBL] [Abstract][Full Text] [Related]