These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 35683054)

  • 1. Improved Shear Strength Prediction Model of Steel Fiber Reinforced Concrete Beams by Adopting Gene Expression Programming.
    Tariq M; Khan A; Ullah A; Shayanfar J; Niaz M
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; an Experimental Study.
    Chalioris CE; Kosmidou PK; Karayannis CG
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing and Prediction of Shear Performance for Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams without Web Reinforcements.
    Li X; Li C; Zhao M; Yang H; Zhou S
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31096660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effectiveness evaluation of different steel fibers on the shear strength of reinforced SFRC slender beams without web rebars.
    Zhao M; Li J; Li C; Shen J
    Sci Rep; 2024 Sep; 14(1):21249. PubMed ID: 39261624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear Strengthening of High Strength Concrete Beams That Contain Hooked-End Steel Fiber.
    Yun HD; Jeong GY; Choi WC
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Shear Capacity of Steel Fiber Reinforced Concrete Beams without Stirrups Using Artificial Intelligence Models.
    Yu Y; Zhao XY; Xu JJ; Wang SC; Xie TY
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and developing of shear strength of reinforced high strength concrete beams with and without steel fibers using multiple mathematical models.
    Saber AZ
    PLoS One; 2022; 17(3):e0265677. PubMed ID: 35358237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear Behavior of Hybrid Fiber Reinforced Concrete Deep Beams.
    Ma K; Qi T; Liu H; Wang H
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30340380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Database of Shear Experiments on Steel Fiber Reinforced Concrete Beams without Stirrups.
    Lantsoght EOL
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30893925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the Mechanical Properties and Crack Expansion Mechanism of Different Content and Shapes of Brass-Coated Steel Fiber-Reinforced Ultra-High-Performance Concrete.
    Jiang Y; Yan Y; Li T; Cao X; Yu L; Qi H
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis and prediction of compressive and split-tensile strength of secondary steel fiber reinforced concrete based on RBF fuzzy neural network model.
    Ling S; Chengbin D; Yafeng Y; Yongheng L
    PLoS One; 2024; 19(2):e0299149. PubMed ID: 38422088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Steel and Basalt Fibers on the Shear Behavior of Double-Span Fiber Reinforced Concrete Beams.
    Krassowska J; Kosior-Kazberuk M
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Steel Fiber Content on Shear Behavior of Reinforced Expanded-Shale Lightweight Concrete Beams with Stirrups.
    Li C; Zhao M; Zhang X; Li J; Li X; Zhao M
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33653011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear Behavior Models of Steel Fiber Reinforced Concrete Beams Modifying Softened Truss Model Approaches.
    Hwang JH; Lee DH; Ju H; Kim KS; Seo SY; Kang JW
    Materials (Basel); 2013 Oct; 6(10):4847-4867. PubMed ID: 28788364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural Tensile Strength of Concrete with Synthetic Fibers.
    Blazy J; Drobiec Ł; Wolka P
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear Strength of Fiber Reinforced Recycled Aggregate Concrete.
    Ghoneim M; Yehia A; Yehia S; Abuzaid W
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32962287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Shear Model for Steel-Fiber-Reinforced High-Strength Concrete Corbels with Welded-Anchorage Longitudinal Reinforcement.
    Li SS; Peng D; Wang H; Zhang FJ; Li HM; Xie YJ; Chen AJ; Xie W
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Reinforcement Ratio on Shear Behavior of I-Shaped UHPC Beams with and without Fiber Shear Reinforcement.
    Yavas A; Goker CO
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32225047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Shear Behavior of Steel Fiber Reinforced Concrete Beams with High-Strength Reinforcement.
    Zhao J; Liang J; Chu L; Shen F
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30208634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparative Study on the Shear Behavior of UHPC Beams with Macro Hooked-End Steel Fibers and PVA Fibers.
    Bermudez M; Wen KW; Hung CC
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.