BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 35683163)

  • 1. Application of Iron Tailings-Based Composite Supplementary Cementitious Materials (SCMs) in Green Concrete.
    Zhang Y; Yang D; Gu X; Chen H; Li Z
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustainable assessment and synergism of ceramic powder and steel slag in iron ore tailings-based concrete.
    Gu X; Li Z; Zhang Y; Zhang W; Li X; Liu B
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):18856-18870. PubMed ID: 38351356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Mineral Admixture from Iron Tailings with Steel Slag-Desulfurization Ash and Its Application to Concrete.
    Zhang Y; Dong M; Zhang W; Chen H; Yang D
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials.
    Lv Y; Wang C; Han W; Li X; Peng H
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and Hydration Properties of Steel Slag-Based Composite Cementitious Materials with High Strength.
    Xu Z; Ma Y; Wang J; Shen X
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Study of Iron-Tailings-Based Cementitious Mortars with Incorporated Graphite Ore and Graphite Tailings: Strength Properties and Microstructure.
    Zhang J; Wei Q; Zhang N; Zhang S; Zhang Y
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable Use of Waste Oyster Shell Powders in a Ternary Supplementary Cementitious Material System for Green Concrete.
    Liu S; Zhang Y; Liu B; Zou Z; Liu Q; Teng Y; Zhang LV
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic Properties and Pore Structure Fractal Characteristics of Alkali-Activated Metakaolin-Slag Composite Cementitious Materials.
    Zhan J; Fu B; Cheng Z
    Polymers (Basel); 2022 Nov; 14(23):. PubMed ID: 36501613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and Hydration Mechanisms of Low Carbon Ferrochrome Slag-Granulated Blast Furnace Slag Composite Cementitious Materials.
    Ren C; Li K; Wang Y; Li Y; Tong J; Cai J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling of ferronickel slag tailing in cementitious materials: Activation and performance.
    Chi L; Lu S; Li Z; Huang C; Jiang H; Peng B
    Sci Total Environ; 2023 Feb; 861():160706. PubMed ID: 36481140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material.
    Li C; Sun H; Yi Z; Li L
    J Hazard Mater; 2010 Feb; 174(1-3):78-83. PubMed ID: 19782471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements.
    Nicula LM; Manea DL; Simedru D; Cadar O; Dragomir ML; Ardelean I; Corbu O
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research Progress on Controlled Low-Strength Materials: Metallurgical Waste Slag as Cementitious Materials.
    Liu Y; Su Y; Xu G; Chen Y; You G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental Study Based on Box-Behnken Design and Response Surface Methodology for Optimization Proportioning of Activated Lithium Slag Composite Cement-Based Cementitious Materials.
    Shao W; Zha W; Zhou X; Xu T
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructure and Key Properties of Phosphogypsum-Red Mud-Slag Composite Cementitious Materials.
    Ma F; Chen L; Lin Z; Liu Z; Zhang W; Guo R
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene-Iron Ore Tailings-Based Cementitious Composites with High Early Flexural Strength.
    Xiao H; Zhang N; Li G; Zhang Y; Wang Y; Wang Y; Zhang Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure of ultra high performance concrete containing lithium slag.
    He ZH; Du SG; Chen D
    J Hazard Mater; 2018 Jul; 353():35-43. PubMed ID: 29631045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of chloride binding capacity of concrete containing supplementary cementitious materials.
    Abd El-Fattah H; Abd El-Zaher Y; Kohail M
    Sci Rep; 2024 Jun; 14(1):12970. PubMed ID: 38839793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and influencing factors of high-performance concrete based on copper tailings for efficient solidification of heavy metals.
    Xie R; Ge R; Li Z; Qu G; Zhang Y; Xu Y; Zeng Y; Li Z
    J Environ Manage; 2023 Jan; 325(Pt B):116469. PubMed ID: 36323112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonation Resistance and Pore Structure of Mixed-Fiber-Reinforced Concrete Containing Fine Aggregates of Iron Ore Tailings.
    Zheng W; Wang S; Quan X; Qu Y; Mo Z; Lin C
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.