These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35683198)

  • 1. Selective Laser Melting of CuSn10: Simulation of Mechanical Properties, Microstructure, and Residual Stresses.
    Kremer R; Khani S; Appel T; Palkowski H; Foadian F
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation and validation of residual deformations in additive manufacturing of metal parts.
    Mayer T; Brändle G; Schönenberger A; Eberlein R
    Heliyon; 2020 May; 6(5):e03987. PubMed ID: 32478189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Interfacial Bonding Properties of NiTi/CuSn10 Dissimilar Materials by Selective Laser Melting.
    Song C; Hu Z; Xiao Y; Li Y; Yang Y
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Selective Laser Melting of CuSn
    Deng C; Kang J; Feng T; Feng Y; Wang X; Wu P
    Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29673175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Laser Shock Peening on Microstructure and Properties of Ti-6Al-4V Titanium Alloy Fabricated via Selective Laser Melting.
    Lan L; Xin R; Jin X; Gao S; He B; Rong Y; Min N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Shaped Charge Jet Performance Generated by Machined and Additively Manufactured CuSn10 Liners.
    Sun S; Jiang J; Wang S; Men J; Li M; Wang Y
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V.
    Ali H; Ghadbeigi H; Mumtaz K
    J Mater Eng Perform; 2018; 27(8):4059-4068. PubMed ID: 30956520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring Microstructure and Mechanical Properties of Additively-Manufactured Ti6Al4V Using Post Processing.
    Ganor YI; Tiferet E; Vogel SC; Brown DW; Chonin M; Pesach A; Hajaj A; Garkun A; Samuha S; Shneck RZ; Yeheskel O
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Numerical Simulation of Grain Growth during Selective Laser Melting of 316L Stainless Steel.
    Xu F; Xiong F; Li MJ; Lian Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting.
    Deng J; Chen C; Zhang W; Li Y; Li R; Zhou K
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heat treatment on the microstructure, residual stress, and mechanical properties of Co-Cr alloy fabricated by selective laser melting.
    Ko KH; Kang HG; Huh YH; Park CJ; Cho LR
    J Mech Behav Biomed Mater; 2022 Feb; 126():105051. PubMed ID: 34959095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting.
    Dong Z; Zhang X; Shi W; Zhou H; Lei H; Liang J
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Sensing and Calibration of Residual Stresses Measurements in the Incremental Hole-Drilling Method.
    Ammar MMA; Shirinzadeh B; Lai KZ; Wei W
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
    Kabir MR; Richter H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crack Growth Behavior of Additively Manufactured 316L Steel-Influence of Build Orientation and Heat Treatment.
    Kluczyński J; Śnieżek L; Grzelak K; Torzewski J; Szachogłuchowicz I; Wachowski M; Łuszczek J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32707999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Annealing and Solution Treatments on the Microstructure and Mechanical Properties of Ti6Al4V Manufactured by Selective Laser Melting.
    Jaber H; Kónya J; Kulcsár K; Kovács T
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion Resistance of 316L/CuSn10 Multi-Material Manufactured by Powder Bed Fusion.
    Kremer R; Etzkorn J; Palkowski H; Foadian F
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Laser Melting of Duplex Stainless Steel 2205: Effect of Post-Processing Heat Treatment on Microstructure, Mechanical Properties, and Corrosion Resistance.
    Papula S; Song M; Pateras A; Chen XB; Brandt M; Easton M; Yagodzinskyy Y; Virkkunen I; Hänninen H
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31382506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Martensitic Transformation and Mechanical Properties of Ti6Al4V Prepared via Selective Laser Melting.
    He J; Li D; Jiang W; Ke L; Qin G; Ye Y; Qin Q; Qiu D
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.