These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel. Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424 [TBL] [Abstract][Full Text] [Related]
3. Experimental data from service-like creep-fatigue experiments on grade P92 steel. Sonntag N; Jürgens M; Uhlemann P; Skrotzki B; Olbricht J Data Brief; 2023 Aug; 49():109333. PubMed ID: 37409176 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation on creep-ratcheting behavior of columnar nanocrystalline aluminum. Babu PN; Pal S J Mol Graph Model; 2023 Jan; 118():108376. PubMed ID: 36413920 [TBL] [Abstract][Full Text] [Related]
5. Fatigue Fracture Analysis on 2524 Aluminum Alloy with the Influence of Creep-Aging Forming Processes. Ma L; Liu C; Ma M; Wang Z; Wu D; Liu L; Song M Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591577 [TBL] [Abstract][Full Text] [Related]
6. Fatigue Behavior of the FGH96 Superalloy under High-Temperature Cyclic Loading. Li Z; Qin H; Xu K; Xie Z; Ji P; Jia M Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687575 [TBL] [Abstract][Full Text] [Related]
7. Application of Small Specimen Test Technique to Evaluate Creep Behavior of Austenitic Stainless Steel. Yu B; Han W; Tong Z; Geng D; Wang C; Zhao Y; Yang W Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31404993 [TBL] [Abstract][Full Text] [Related]
9. Creep-fatigue as a possible cause of dental amalgam margin failure. Williams PT; Hedge GL J Dent Res; 1985 Mar; 64(3):470-5. PubMed ID: 3855901 [TBL] [Abstract][Full Text] [Related]
10. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation. Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085 [TBL] [Abstract][Full Text] [Related]
11. A Comparison of Amplitude-and Time-Dependent Cyclic Deformation Behavior for Fully-Austenite Stainless Steel 316L and Duplex Stainless Steel 2205. Li S; Jiang W; Xie X; Dong Z Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639991 [TBL] [Abstract][Full Text] [Related]
12. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions. Wang M; Du J; Deng Q Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419 [TBL] [Abstract][Full Text] [Related]
13. Oxidation Damage Evolution in Low-Cycle Fatigue Life of Niobium-Stabilized Austenitic Stainless Steel. Choi WK; Ha S; Kim JC; Park JC; Gong A; Kim TW Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744131 [TBL] [Abstract][Full Text] [Related]
14. Investigation on Creep Deformation and Age Strengthening Behavior of 304 Stainless Steel under High Stress Levels. Zhan L; Xie H; Yang Y; Zhao S; Chang Z; Xia Y; Zheng Z; Zhou Y Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591475 [TBL] [Abstract][Full Text] [Related]
15. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading. Lin X; Zhao J; Gao L; Zhang C; Gao H J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002 [TBL] [Abstract][Full Text] [Related]
16. Creep behavior and in-depth microstructural characterization of dissimilar joints. Kauffmann F; Klein T; Klenk A; Maile K Sci Technol Adv Mater; 2013 Feb; 14(1):014203. PubMed ID: 27877551 [TBL] [Abstract][Full Text] [Related]
17. Study on Creep-Fatigue Mechanical Behavior and Life Prediction of Ti Wang Y; Wang X; Yang Y; Lan X; Zhang Z; Li H Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143548 [TBL] [Abstract][Full Text] [Related]
18. Effect of Neutron Irradiation on the Mechanical Properties, Swelling and Creep of Austenitic Stainless Steels. Griffiths M Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067918 [TBL] [Abstract][Full Text] [Related]
19. Creep contributes to the fatigue behavior of bovine trabecular bone. Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444 [TBL] [Abstract][Full Text] [Related]
20. Creep Resistance of S304H Austenitic Steel Processed by High-Pressure Sliding. Kral P; Dvorak J; Sklenicka V; Horita Z; Takizawa Y; Tang Y; Kral L; Kvapilova M; Roupcová P; Horvath J Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]