These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35683282)

  • 21. Creep-Fatigue Failure Diagnosis.
    Holdsworth S
    Materials (Basel); 2015 Nov; 8(11):7757-7769. PubMed ID: 28793676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel.
    Barcellini C; Dumbill S; Jimenez-Melero E
    J Microsc; 2019 Apr; 274(1):3-12. PubMed ID: 30561019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tensile Properties of 21-6-9 Austenitic Stainless Steel Built Using Laser Powder-Bed Fusion.
    Neikter M; Edin E; Proper S; Bhaskar P; Nekkalapudi GK; Linde O; Hansson T; Pederson R
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.
    Dymáček P; Jarý M; Dobeš F; Kloc L
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29337867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Creep-resistant, Al2O3-forming austenitic stainless steels.
    Yamamoto Y; Brady MP; Lu ZP; Maziasz PJ; Liu CT; Pint BA; More KL; Meyer HM; Payzant EA
    Science; 2007 Apr; 316(5823):433-6. PubMed ID: 17446398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy.
    Cao C; Fu J; Tong T; Hao Y; Gu P; Hao H; Peng L
    Entropy (Basel); 2018 Dec; 20(12):. PubMed ID: 33266684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructural Effects on Irradiation Creep of Reactor Core Materials.
    Griffiths M
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of Creep Damage on the Fatigue Life of P91 Steel.
    Mroziński S; Lis Z; Egner H
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Concise Binomial Model for Nonlinear Creep-Fatigue Crack Growth Behavior at Elevated Temperatures.
    Mao J; Xiao Z; Hu D; Guo X; Wang R
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057367
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Effect of Predeformation on Creep Strength of 9% Cr Steel.
    Král P; Dvořák J; Blum W; Sklenička V; Horita Z; Takizawa Y; Tang Y; Kunčická L; Kocich R; Kvapilová M; Svobodová M
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33255598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain-Controlled Fatigue Behavior and Microevolution of 316L Stainless Steel under Cyclic Shear Path.
    Liu X; Zhang S; Bao Y; Zhang Z; Yue Z
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel.
    Hu CY; Somani MC; Misra RDK; Yang CG
    J Mech Behav Biomed Mater; 2020 Apr; 104():103666. PubMed ID: 32174424
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE).
    Kanthabhabha Jeya RP; Bouzid AH
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of cold working on fatigue behavior of stainless steels used for prothesis: application to the study of wires with small sections.
    Coquillet B; Vincent L; Guiraldenq P
    J Biomed Mater Res; 1979 Jul; 13(4):657-68. PubMed ID: 457707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated Temperature Tensile Creep Behavior of Aluminum Borate Whisker-Reinforced Aluminum Alloy Composites (ABOw/Al-12Si).
    Ji Y; Yuan Y; Zhang W; Xu Y; Liu Y
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Critical Analysis of the Conventionally Employed Creep Lifing Methods.
    Abdallah Z; Gray V; Whittaker M; Perkins K
    Materials (Basel); 2014 Apr; 7(5):3371-3398. PubMed ID: 28788623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys.
    Liu K; Wang S; Pan L; Chen XG
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676566
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the Fracture Behavior of a Creep Resistant 10% Cr Steel with High Boron and Low Nitrogen Contents at Low Temperatures.
    Mishnev R; Dudova N; Kaibyshev R; Belyakov A
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quasi-static and ratcheting properties of trabecular bone under uniaxial and cyclic compression.
    Gao LL; Wei CL; Zhang CQ; Gao H; Yang N; Dong LM
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1050-1059. PubMed ID: 28531978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.