These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 35683671)
21. Highly Thermostable and Efficient Formamidinium-Based Low-Dimensional Perovskite Solar Cells. Cheng L; Liu Z; Li S; Zhai Y; Wang X; Qiao Z; Xu Q; Meng K; Zhu Z; Chen G Angew Chem Int Ed Engl; 2021 Jan; 60(2):856-864. PubMed ID: 33021033 [TBL] [Abstract][Full Text] [Related]
22. Revealing the Role of Methylammonium Chloride for Improving the Performance of 2D Perovskite Solar Cells. Zheng F; Zuo C; Niu M; Zhou C; Bradley SJ; Hall CR; Xu W; Wen X; Hao X; Gao M; Smith TA; Ghiggino KP ACS Appl Mater Interfaces; 2020 Jun; 12(23):25980-25990. PubMed ID: 32419455 [TBL] [Abstract][Full Text] [Related]
23. Quasi-2D Ruddlesden-Popper Lead Halide Perovskites: How Edge Matters. Maiti A; Pal AJ J Phys Chem Lett; 2022 Oct; 13(42):9875-9882. PubMed ID: 36251849 [TBL] [Abstract][Full Text] [Related]
25. Bulky ammonium iodide and in-situ formed 2D Ruddlesden-Popper layer enhances the stability and efficiency of perovskite solar cells. Du Y; Wu J; Li G; Wang X; Song Z; Deng C; Chen Q; Zou Y; Sun W; Lan Z J Colloid Interface Sci; 2022 May; 614():247-255. PubMed ID: 35101672 [TBL] [Abstract][Full Text] [Related]
26. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. Yan L; Ma J; Li P; Zang S; Han L; Zhang Y; Song Y Adv Mater; 2022 Feb; 34(7):e2106822. PubMed ID: 34676930 [TBL] [Abstract][Full Text] [Related]
27. Thiocyanate-Passivated Diaminonaphthalene-Incorporated Dion-Jacobson Perovskite for Highly Efficient and Stable Solar Cells. Yukta ; Chavan RD; Prochowicz D; Yadav P; Tavakoli MM; Satapathi S ACS Appl Mater Interfaces; 2022 Jan; 14(1):850-860. PubMed ID: 34978806 [TBL] [Abstract][Full Text] [Related]
28. Fluorinated Low-Dimensional Ruddlesden-Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability. Shi J; Gao Y; Gao X; Zhang Y; Zhang J; Jing X; Shao M Adv Mater; 2019 Sep; 31(37):e1901673. PubMed ID: 31379023 [TBL] [Abstract][Full Text] [Related]
29. Imaging the Moisture-Induced Degradation Process of 2D Organolead Halide Perovskites. Tang J; Tian W; Zhao C; Sun Q; Zhang C; Cheng H; Shi Y; Jin S ACS Omega; 2022 Mar; 7(12):10365-10371. PubMed ID: 35382338 [TBL] [Abstract][Full Text] [Related]
30. Universal Bifacial Stamping Approach Enabling Reverse-Graded Ruddlesden-Popper 2D Perovskite Solar Cells. Lee J; Jang G; Ma S; Lee CU; Son J; Jeong W; Moon J Small; 2022 Jul; 18(29):e2202159. PubMed ID: 35748140 [TBL] [Abstract][Full Text] [Related]
31. 2D Ruddlesden-Popper Perovskites with Polymer Additive as Stable and Transparent Optoelectronic Materials for Building-Integrated Applications. Alamban A; Ahmad M; Rolston N Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057860 [TBL] [Abstract][Full Text] [Related]
32. Impact of Strain Relaxation on 2D Ruddlesden-Popper Perovskite Solar Cells. Cheng Q; Wang B; Huang G; Li Y; Li X; Chen J; Yue S; Li K; Zhang H; Zhang Y; Zhou H Angew Chem Int Ed Engl; 2022 Sep; 61(36):e202208264. PubMed ID: 35789174 [TBL] [Abstract][Full Text] [Related]
33. 2D Ruddlesden-Popper Polycrystalline PerovskitePyro-Phototronic Photodetectors. Wan J; Yuan H; Xiao Z; Sun J; Peng Y; Zhang D; Yuan X; Zhang J; Li Z; Dai G; Yang J Small; 2023 Sep; 19(38):e2207185. PubMed ID: 37226387 [TBL] [Abstract][Full Text] [Related]
34. Promoting Ruddlesden-Popper Perovskite Formation by Tailoring Spacer Intramolecular Interaction for Efficient and Stable Solar Cells. Dong X; Li Y; Wang X; Zhou Y; Zhao Y; Song W; Xu S; Wang F; Ran C; Song L; Miao Z Small; 2024 Jul; 20(27):e2309218. PubMed ID: 38258343 [TBL] [Abstract][Full Text] [Related]
35. Studies of high-membered two-dimensional Ruddlesden-Popper Cs Chen YC; Wu KC; Chen HA; Chu WH; Gowdru SM; Lin JC; Lin BH; Tang MT; Chang CC; Lai YH; Kuo TR; Wen CY; Wang DY Mater Horiz; 2022 Aug; 9(9):2433-2442. PubMed ID: 35848594 [TBL] [Abstract][Full Text] [Related]
36. Unravelling Structural, Optical, and Band Alignment Properties of Mixed Pb-Sn Metal-Halide Quasi-2D Ruddlesden-Popper Perovskites. Deshpande SS; Saykar NG; Mandal A; Rahane S; Jadhav YA; Upadhyay Kahaly M; Nagy GN; Shinde A; Suresh S; Rondiya SR Langmuir; 2024 Aug; 40(31):16180-16189. PubMed ID: 39069666 [TBL] [Abstract][Full Text] [Related]
37. Growth and Degradation Kinetics of Organic-Inorganic Hybrid Perovskite Films Determined by In Situ Grazing-Incidence X-Ray Scattering Techniques. Wang J; Wang W; Chen Y; Song L; Huang W Small Methods; 2021 Dec; 5(12):e2100829. PubMed ID: 34928020 [TBL] [Abstract][Full Text] [Related]
38. Novel Series of Quasi-2D Ruddlesden-Popper Perovskites Based on Short-Chained Spacer Cation for Enhanced Photodetection. Dong R; Lan C; Xu X; Liang X; Hu X; Li D; Zhou Z; Shu L; Yip S; Li C; Tsang SW; Ho JC ACS Appl Mater Interfaces; 2018 Jun; 10(22):19019-19026. PubMed ID: 29741083 [TBL] [Abstract][Full Text] [Related]
39. Crystal Orientation Modulation and Defect Passivation for Efficient and Stable Methylammonium-Free Dion-Jacobson Quasi-2D Perovskite Solar Cells. Su P; Bai L; Bi H; Liu B; He D; Wang W; Cao X; Chen S; Lee D; Yang H; Zang Z; Chen J ACS Appl Mater Interfaces; 2021 Jun; 13(25):29567-29575. PubMed ID: 34152721 [TBL] [Abstract][Full Text] [Related]
40. Phase Distribution and Carrier Dynamics in Multiple-Ring Aromatic Spacer-Based Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Xu Z; Lu D; Liu F; Lai H; Wan X; Zhang X; Liu Y; Chen Y ACS Nano; 2020 Apr; 14(4):4871-4881. PubMed ID: 32243131 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]