These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35683690)

  • 1. Disordered Rock-Salt Type Li
    Rocca R; Sgroi MF; Camino B; D'Amore M; Ferrari AM
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium-Rich Rock Salt Type Sulfides-Selenides (Li
    Celasun Y; Colin JF; Martinet S; Benayad A; Peralta D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in the Cathode Materials for Lithium Rechargeable Batteries.
    Lee W; Muhammad S; Sergey C; Lee H; Yoon J; Kang YM; Yoon WS
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2578-2605. PubMed ID: 31034134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rock-salt-type lithium metal sulphides as novel positive-electrode materials.
    Sakuda A; Takeuchi T; Okamura K; Kobayashi H; Sakaebe H; Tatsumi K; Ogumi Z
    Sci Rep; 2014 May; 4():4883. PubMed ID: 24811191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced cobalt-free cathode materials for sodium-ion batteries.
    Chu S; Guo S; Zhou H
    Chem Soc Rev; 2021 Nov; 50(23):13189-13235. PubMed ID: 34719701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A New Type of Li-Rich Rock-Salt Oxide Li
    Li X; Qiao Y; Guo S; Jiang K; Ishida M; Zhou H
    Adv Mater; 2019 Mar; 31(11):e1807825. PubMed ID: 30672613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.
    Antipov EV; Khasanova NR; Fedotov SS
    IUCrJ; 2015 Jan; 2(Pt 1):85-94. PubMed ID: 25610630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the Nature and Role of Layered Cation Ordering in Cation-Disordered Rock-Salt Cathodes.
    Wang Y; Huang S; Raji-Adefila B; Outka A; Wang JH; Chen D
    J Am Chem Soc; 2022 Nov; 144(43):19838-19848. PubMed ID: 36257295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Tuning of the Electrochemical Properties of Vanadium-Based Cation-Disordered Rock-Salt Oxide Positive Electrode Material for Lithium-Ion Batteries.
    Cambaz MA; Vinayan BP; Euchner H; Pervez SA; Geßwein H; Braun T; Gross A; Fichtner M
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39848-39858. PubMed ID: 31589014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon Structure, Infra-Red and Raman Spectra of Li
    Pulido R; Naveas N; Martin-Palma RJ; Agulló-Rueda F; Ferró VR; Hernández-Montelongo J; Recio-Sánchez G; Brito I; Manso-Silván M
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Transfer Band Gap as an Indicator of Hysteresis in Li-Disordered Rock Salt Cathodes for Li-Ion Batteries.
    Jacquet Q; Iadecola A; Saubanère M; Li H; Berg EJ; Rousse G; Cabana J; Doublet ML; Tarascon JM
    J Am Chem Soc; 2019 Jul; 141(29):11452-11464. PubMed ID: 31290652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium-Sulfur Batteries.
    Zhao BS; Wang L; Liu S; Li GR; Gao XP
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1212-1221. PubMed ID: 34967595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Co-Free Ni-Rich LiNi
    Xi Y; Wang M; Xu L; Kheimeh Sari HM; Li W; Hu J; Cao Y; Chen L; Wang L; Pu X; Wang J; Bai Y; Liu X; Li X
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57341-57349. PubMed ID: 34806873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A disordered rock salt anode for fast-charging lithium-ion batteries.
    Liu H; Zhu Z; Yan Q; Yu S; He X; Chen Y; Zhang R; Ma L; Liu T; Li M; Lin R; Chen Y; Li Y; Xing X; Choi Y; Gao L; Cho HS; An K; Feng J; Kostecki R; Amine K; Wu T; Lu J; Xin HL; Ong SP; Liu P
    Nature; 2020 Sep; 585(7823):63-67. PubMed ID: 32879503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and Experimental Investigation of Ti Substitution in Li1(NixMnxCo1-2x-yTiy)O2 for Lithium Ion Batteries.
    Markus IM; Lin F; Kam KC; Asta M; Doeff MM
    J Phys Chem Lett; 2014 Nov; 5(21):3649-55. PubMed ID: 26278733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.
    Shi JL; Zhang JN; He M; Zhang XD; Yin YX; Li H; Guo YG; Gu L; Wan LJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20138-46. PubMed ID: 27437556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.