BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35683705)

  • 1. Exploring the Effect of Mechanical Anisotropy of Protein Structures in the Unfoldase Mechanism of AAA+ Molecular Machines.
    Varikoti RA; Fonseka HYY; Kelly MS; Javidi A; Damre M; Mullen S; Nugent JL; Gonzales CM; Stan G; Dima RI
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular investigations into the unfoldase action of severing enzymes on microtubules.
    Varikoti RA; Macke AC; Speck V; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2020 May; 77(5-6):214-228. PubMed ID: 32170815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric Conformational Transitions in AAA+ Biological Nanomachines Modulate Direction-Dependent Substrate Protein Unfolding Mechanisms.
    Javidialesaadi A; Stan G
    J Phys Chem B; 2017 Jul; 121(29):7108-7121. PubMed ID: 28675036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin.
    Roll-Mecak A; Vale RD
    Nature; 2008 Jan; 451(7176):363-7. PubMed ID: 18202664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.
    Monroe N; Hill CP
    J Mol Biol; 2016 May; 428(9 Pt B):1897-911. PubMed ID: 26555750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation.
    Han H; Schubert HL; McCullough J; Monroe N; Purdy MD; Yeager M; Sundquist WI; Hill CP
    J Biol Chem; 2020 Jan; 295(2):435-443. PubMed ID: 31767681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule Severing Enzymes Oligomerization and Allostery: A Tale of Two Domains.
    Macke AC; Kelly MS; Varikoti RA; Mullen S; Groves D; Forbes C; Dima RI
    J Phys Chem B; 2022 Dec; 126(50):10569-10586. PubMed ID: 36475672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-Grained Simulations of Topology-Dependent Mechanisms of Protein Unfolding and Translocation Mediated by ClpY ATPase Nanomachines.
    Kravats AN; Tonddast-Navaei S; Stan G
    PLoS Comput Biol; 2016 Jan; 12(1):e1004675. PubMed ID: 26734937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines.
    Kravats AN; Tonddast-Navaei S; Bucher RJ; Stan G
    J Chem Phys; 2013 Sep; 139(12):121921. PubMed ID: 24089733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase.
    Kravats A; Jayasinghe M; Stan G
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2234-9. PubMed ID: 21266546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubule severing by katanin p60 AAA+ ATPase requires the C-terminal acidic tails of both α- and β-tubulins and basic amino acid residues in the AAA+ ring pore.
    Johjima A; Noi K; Nishikori S; Ogi H; Esaki M; Ogura T
    J Biol Chem; 2015 May; 290(18):11762-70. PubMed ID: 25805498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved aromatic and basic amino acid residues in the pore region of Caenorhabditis elegans spastin play critical roles in microtubule severing.
    Matsushita-Ishiodori Y; Yamanaka K; Hashimoto H; Esaki M; Ogura T
    Genes Cells; 2009 Aug; 14(8):925-40. PubMed ID: 19619244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing.
    White SR; Evans KJ; Lary J; Cole JL; Lauring B
    J Cell Biol; 2007 Mar; 176(7):995-1005. PubMed ID: 17389232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effects of lattice defects on microtubule breaking and healing.
    Jiang N; Bailey ME; Burke J; Ross JL; Dima RI
    Cytoskeleton (Hoboken); 2017 Jan; 74(1):3-17. PubMed ID: 27935245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Microtubule severing proteins - structure and activity regulation].
    Wacławek E; Włoga D
    Postepy Biochem; 2016; 62(1):46-51. PubMed ID: 28132444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine.
    Liu J; Mei Z; Li N; Qi Y; Xu Y; Shi Y; Wang F; Lei J; Gao N
    J Biol Chem; 2013 Jun; 288(24):17597-608. PubMed ID: 23595989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit Interactions and cooperativity in the microtubule-severing AAA ATPase spastin.
    Eckert T; Link S; Le DT; Sobczak JP; Gieseke A; Richter K; Woehlke G
    J Biol Chem; 2012 Jul; 287(31):26278-90. PubMed ID: 22637577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics.
    Errico A; Ballabio A; Rugarli EI
    Hum Mol Genet; 2002 Jan; 11(2):153-63. PubMed ID: 11809724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing Allele-Specific Inhibitors of Spastin, a Microtubule-Severing AAA Protein.
    Pisa R; Cupido T; Kapoor TM
    J Am Chem Soc; 2019 Apr; 141(14):5602-5606. PubMed ID: 30875216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.