These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35683747)

  • 1. Microstructural Study of MgB
    Jin O; Shang Y; Huang X; Mu X; Szabó DV; Le TT; Wagner S; Kübel C; Pistidda C; Pundt A
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation Kinetics of LiBH
    Jin O; Shang Y; Huang X; Szabó DV; Le TT; Wagner S; Klassen T; Kübel C; Pistidda C; Pundt A
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel three-step method for preparation of a TiB2-promoted LiBH4-MgH2 composite for reversible hydrogen storage.
    Kang X; Wang K; Zhong Y; Yang B; Wang P
    Phys Chem Chem Phys; 2013 Feb; 15(6):2153-8. PubMed ID: 23288432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible storage of hydrogen in destabilized LiBH4.
    Vajo JJ; Skeith SL; Mertens F
    J Phys Chem B; 2005 Mar; 109(9):3719-22. PubMed ID: 16851415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First principle study of hydrogenation of MgB2: an important step toward reversible hydrogen storage in the coupled LiBH4/MgH2 system.
    Du AJ; Smith SC; Yao XD; Sun CH; Li L; Lu GQ
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4388-91. PubMed ID: 19916462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced hydrogen storage properties of the 2LiBH4-MgH2 composite with BaTiO3 as an additive.
    Wang J; Han S; Wang Z; Ke D; Liu J; Ma M
    Dalton Trans; 2016 Apr; 45(16):7042-8. PubMed ID: 26990634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and kinetic investigation of the hydride composite Ca(BH4)2 + MgH2 system doped with NbF5 for solid-state hydrogen storage.
    Karimi F; Pranzas PK; Pistidda C; Puszkiel JA; Milanese C; Vainio U; Paskevicius M; Emmler T; Santoru A; Utke R; Tolkiehn M; Minella CB; Chaudhary AL; Boerries S; Buckley CE; Enzo S; Schreyer A; Klassen T; Dornheim M
    Phys Chem Chem Phys; 2015 Nov; 17(41):27328-42. PubMed ID: 26418174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive study on lithium-based reactive hydride composite (Li-RHC) as a reversible solid-state hydrogen storage system toward potential mobile applications.
    Karimi F; Pranzas PK; Puszkiel JA; Castro Riglos MV; Milanese C; Vainio U; Pistidda C; Gizer G; Klassen T; Schreyer A; Dornheim M
    RSC Adv; 2021 Jun; 11(37):23122-23135. PubMed ID: 35480441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic Enhancement of Direct Hydrogenation of MgB
    Sugai C; Kim S; Severa G; White JL; Leick N; Martinez MB; Gennett T; Stavila V; Jensen C
    Chemphyschem; 2019 May; 20(10):1301-1304. PubMed ID: 30843647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing Core-Shell Co@N-Rich Carbon Additives Toward Enhanced Hydrogen Storage Performance of Magnesium Hydride.
    Wang K; Deng Q
    Front Chem; 2020; 8():223. PubMed ID: 32318545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Synchrotron X-ray Diffraction Studies of Hydrogen-Desorption Properties of 2LiBH
    Ghaani MR; Catti M; English NJ
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites.
    Bösenberg U; Vainio U; Pranzas PK; von Colbe JM; Goerigk G; Welter E; Dornheim M; Schreyer A; Bormann R
    Nanotechnology; 2009 May; 20(20):204003. PubMed ID: 19420651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance.
    Huang X; Xiao X; Shao J; Zhai B; Fan X; Cheng C; Li S; Ge H; Wang Q; Chen L
    Nanoscale; 2016 Aug; 8(31):14898-908. PubMed ID: 27464228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of Metallic Ti to TiH
    Pukazhselvan D; Sandhya KS; Ramasamy D; Shaula A; Fagg DP
    Chemphyschem; 2020 Jun; 21(11):1195-1201. PubMed ID: 32314857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous TiCu-Based Additives for Improving Hydrogen Storage Properties of Magnesium Hydride.
    Zhou C; Bowman RC; Fang ZZ; Lu J; Xu L; Sun P; Liu H; Wu H; Liu Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38868-38879. PubMed ID: 31559817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimentally Observed Nucleation and Growth Behavior of Mg/MgH
    Lyu J; Kudiiarov V; Lider A
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on LiBH
    Li Y; Li P; Qu X
    Sci Rep; 2017 Jan; 7():41754. PubMed ID: 28139740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fe
    Xu G; Zhang W; Zhang Y; Zhao X; Wen P; Ma D
    RSC Adv; 2018 May; 8(35):19353-19361. PubMed ID: 35541019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydrogenation Properties of Magnesium Hydride Loaded with Fe, Fe-C, and Fe-Mg Additives.
    Pukazhselvan D; Nasani N; Yang T; Bdikin I; Kovalevsky AV; Fagg DP
    Chemphyschem; 2017 Feb; 18(3):287-291. PubMed ID: 27860105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning LiBH
    Puszkiel J; Gasnier A; Amica G; Gennari F
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.