These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35683749)

  • 1. Electrodeposition of Co
    Seyed-Talebi SM; Cheraghizade M; Beheshtian J; Kuan CH; Diau EW
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Supercapacitor Performance Using a Co
    Ansarinejad H; Shabani-Nooshabadi M; Ghoreishi SM
    Chem Asian J; 2021 May; 16(10):1258-1270. PubMed ID: 33783970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.
    Liu Y; Liu L; Shan J; Zhang J
    J Hazard Mater; 2015 Jun; 290():1-8. PubMed ID: 25731146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.
    Ghosh D; Das CK
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1122-31. PubMed ID: 25539030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors.
    Lu YM; Hong SH
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile one-pot synthesis of NiCo
    Amin BG; Masud J; Nath M
    RSC Adv; 2019 Nov; 9(65):37939-37946. PubMed ID: 35541792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetite ultrafine particles/porous reduced graphene oxide
    Mao Y; Zhou B; Peng S
    RSC Adv; 2020 May; 10(35):20753-20764. PubMed ID: 35517778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of Hierarchical CNT/rGO-Supported MnMoO
    Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational Design of Nanosheet Array-Like Layered-Double-Hydroxide-Derived NiCo
    Wei Z; Wang Q; Qu M; Zhang H
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18734-18744. PubMed ID: 38569072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercapacitive properties of carbazole-containing cobalt(II) phthalocyanines/reduced graphene oxide composites.
    Yenilmez HY; Budak Ö; Öztürk NF; Koca A; Boz A; Ustamehmetoğlu B; Altuntaş Bayır Z
    Dalton Trans; 2024 Jan; 53(4):1766-1778. PubMed ID: 38170852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Graphene Oxide Prepared on Nickel Foam by Electrophoretic Deposition and Thermal Reduction as High-Performance Supercapacitor Electrodes.
    Xu Y; Li J; Huang W
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28800098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors.
    Shih YL; Wu CL; Wu TY; Chen DH
    Nanotechnology; 2019 Mar; 30(11):115601. PubMed ID: 30557868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic assisted synthesis of Ni
    Hamidi R; Ghasemi S; Hosseini SR
    Ultrason Sonochem; 2020 Apr; 62():104869. PubMed ID: 31796327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.
    Wu C; Cai J; Zhang Q; Zhou X; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26512-21. PubMed ID: 26575957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of zeolitic imidazolate frameworks-derived Ni
    Xue B; Li K; Guo Y; Lu J; Gu S; Zhang L
    J Colloid Interface Sci; 2019 Dec; 557():112-123. PubMed ID: 31518833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercapacitor Electrodes: Is Nickel Foam the Right Substrate for Active Materials?
    Dojčinović MP; Stojković Simatović I; Nikolić MV
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of MnO
    Liu R; Jiang R; Chu YH; Yang WD
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ready-to-use binder-free Co(OH)
    Aghazadeh M; Rad HF; Cheraghali R
    RSC Adv; 2022 Mar; 12(15):9276-9291. PubMed ID: 35424885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Reduction of Graphene Oxide by Ni Foam as a High-Capacitance Supercapacitor Electrode.
    Yang J; Zhang E; Li X; Yu Y; Qu J; Yu ZZ
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2297-305. PubMed ID: 26711186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.