These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35683793)

  • 1. Erbium-Doped GQD-Embedded Coffee-Ground-Derived Porous Biochar for Highly Efficient Asymmetric Supercapacitor.
    Bui TAN; Huynh TV; Tran HL; Doong RA
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the energy storage densities of supercapacitors by incorporating N-doped graphene quantum dots into cubic porous carbon.
    Li Z; Bu F; Wei J; Yao W; Wang L; Chen Z; Pan D; Wu M
    Nanoscale; 2018 Dec; 10(48):22871-22883. PubMed ID: 30488932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supercapacitor of Graphene Quantum Dots with Uniform Sizes.
    Zhang S; Sui L; Dong H; He W; Dong L; Yu L
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12983-12991. PubMed ID: 29569891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the energy storage performance of V
    Ganganboina AB; Park EY; Doong RA
    Nanoscale; 2020 Aug; 12(32):16944-16955. PubMed ID: 32776060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous carbon derived from metal-organic framework@graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries.
    Yu H; Zhu W; Zhou H; Liu J; Yang Z; Hu X; Yuan A
    RSC Adv; 2019 Mar; 9(17):9577-9583. PubMed ID: 35520734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the surface area of metal organic framework-derived porous carbon through constructing inner support by compatible graphene quantum dots.
    Tang T; Yuan R; Guo N; Zhu J; Gan X; Li Q; Qin F; Luo W; Wang L; Zhang S; Song H; Jia D
    J Colloid Interface Sci; 2022 Oct; 623():77-85. PubMed ID: 35569225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flower-like nickel hydroxide@tea leaf-derived biochar composite for high-performance supercapacitor application.
    Pradiprao Khedulkar A; Dien Dang V; Pandit B; Ai Ngoc Bui T; Linh Tran H; Doong RA
    J Colloid Interface Sci; 2022 Oct; 623():845-855. PubMed ID: 35636293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave synthesis of histidine-functionalized graphene quantum dots/Ni-Co LDH with flower ball structure for supercapacitor.
    Qiu H; Sun X; An S; Lan D; Cui J; Zhang Y; He W
    J Colloid Interface Sci; 2020 May; 567():264-273. PubMed ID: 32062489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Quantum Dot Reinforced Electrospun Carbon Nanofiber Fabrics with High Surface Area for Ultrahigh Rate Supercapacitors.
    Zhao J; Zhu J; Li Y; Wang L; Dong Y; Jiang Z; Fan C; Cao Y; Sheng R; Liu A; Zhang S; Song H; Jia D; Fan Z
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11669-11678. PubMed ID: 32057233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Understanding of Charge-Transfer-Mediated Fe
    Das R; Sugimoto H; Fujii M; Giri PK
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4755-4768. PubMed ID: 31914727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of high B-doped ordered mesoporous carbon with 4-hydroxyphenylborate phenolic resin for supercapacitor electrode materials.
    Zhang Y; Qi F; Liu Y
    RSC Adv; 2020 Mar; 10(19):11210-11218. PubMed ID: 35495305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances.
    Zhang D; Xue Y; Chen J; Guo X; Yang D; Wang J; Zhang J; Zhang F; Yuan A
    J Nanosci Nanotechnol; 2020 May; 20(5):2728-2735. PubMed ID: 31635608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanty graphene-driven phase control and heteroatom functionalization of ZIF-67-derived CoP-draped N-doped carbon/graphene as a hybrid electrode for high-performance asymmetric supercapacitor.
    Gayathri S; Arunkumar P; Han JH
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1136-1148. PubMed ID: 32947097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores.
    Kim T; Jung G; Yoo S; Suh KS; Ruoff RS
    ACS Nano; 2013 Aug; 7(8):6899-905. PubMed ID: 23829569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-Doped Porous Carbons As Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell.
    Wang L; Gao Z; Chang J; Liu X; Wu D; Xu F; Guo Y; Jiang K
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20234-44. PubMed ID: 26320745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and Phosphorus Co-doped Porous Carbon for High-Performance Supercapacitors.
    Zhou J; Ye S; Zeng Q; Yang H; Chen J; Guo Z; Jiang H; Rajan K
    Front Chem; 2020; 8():105. PubMed ID: 32154218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoO
    Zhang M; Song Z; Liu H; Wang A; Shao S
    J Colloid Interface Sci; 2021 Feb; 584():418-428. PubMed ID: 33080502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.