BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35683824)

  • 1. The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites.
    Ceraulo M; La Mantia FP; Mistretta MC; Titone V
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocomposites based on Argan nut shell and a polymer matrix: Effect of filler content and coupling agent.
    Essabir H; Bensalah MO; Rodrigue D; Bouhfid R; Qaiss Ael K
    Carbohydr Polym; 2016 Jun; 143():70-83. PubMed ID: 27083345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Composites Based on Polypropylene with Basalt/Hazelnut Shell Fillers: The Influence of Temperature, Thermal Aging, and Water Absorption on Mechanical Properties.
    Kufel A; Kuciel S
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31861813
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Scaffaro R; Citarrella MC; Gulino EF; Morreale M
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mater-Bi/Brewers' Spent Grain Biocomposites-Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods.
    Hejna A; Barczewski M; Kosmela P; Mysiukiewicz O; Sulima P; Przyborowski JA; Kowalkowska-Zedler D
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiality of sustainable corn starch-based biocomposites reinforced with cotton filter waste of spinning mill.
    Reza MM; Begum HA; Uddin AJ
    Heliyon; 2023 May; 9(5):e15697. PubMed ID: 37215920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicomechanical Properties of Rice Husk/Coco Peat Reinforced Acrylonitrile Butadiene Styrene Blend Composites.
    Norhasnan NHA; Hassan MZ; Nor AFM; Zaki SA; Dolah R; Jamaludin KR; Aziz SA
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33917337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of thermomechanical and chemical treatment of waste Brewers' spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites.
    Hejna A; Barczewski M; Kosmela P; Mysiukiewicz O; Aniśko J; Sulima P; Andrzej Przyborowski J; Reza Saeb M
    Waste Manag; 2022 Dec; 154():260-271. PubMed ID: 36279594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder.
    Righetti MC; Cinelli P; Mallegni N; Massa CA; Bronco S; Stäbler A; Lazzeri A
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste chicken feather biofiller reinforced bioepoxy resin based biocomposites - A waste to wealth experimental approach.
    Chandran AJ; Rangappa SM; Suyambulingam I; Siengchin S
    Int J Biol Macromol; 2024 Mar; 261(Pt 1):129708. PubMed ID: 38272404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Reprocessing and Fiber Treatments on the Properties of Polypropylene-Sugarcane Bagasse Biocomposites.
    Correa-Aguirre JP; Luna-Vera F; Caicedo C; Vera-Mondragón B; Hidalgo-Salazar MA
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Almond Shell Waste on Physicochemical Properties of Polyester-Based Biocomposites.
    Ramos M; Dominici F; Luzi F; Jiménez A; Garrigós MC; Torre L; Puglia D
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32268549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the Use of Paper Sludge as Filler in Biocomposites for Injection Moulding.
    Gigante V; Cinelli P; Sandroni M; D'ambrosio R; Lazzeri A; Seggiani M
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of Argan Shell Flour in a Biobased Polypropylene Matrix for the Development of High Environmentally Friendly Composites by Injection Molding.
    Jordà-Reolid M; Moreno V; Martínez-Garcia A; Covas JA; Gomez-Caturla J; Ivorra-Martinez J; Quiles-Carrillo L
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature.
    Nagarajan V; Zhang K; Misra M; Mohanty AK
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11203-14. PubMed ID: 25988675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces.
    Frącz W; Janowski G; Smusz R; Szumski M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seawater Biodegradable Poly(butylene succinate-
    Strangis G; Rossi D; Cinelli P; Seggiani M
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites.
    Zhang L; Lv S; Sun C; Wan L; Tan H; Zhang Y
    Polymers (Basel); 2017 Nov; 9(11):. PubMed ID: 30965894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(lactic Acid)-Biochar Biocomposites: Effect of Processing and Filler Content on Rheological, Thermal, and Mechanical Properties.
    Arrigo R; Bartoli M; Malucelli G
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32290601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal and Mechanical Properties of Biocomposites Based on Polylactide and Tall Wheatgrass.
    Gozdecki C; Moraczewski K; Kociszewski M
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.