These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35684281)

  • 1. Morphological, Biochemical, and Proteomic Analyses to Understand the Promotive Effects of Plant-Derived Smoke Solution on Wheat Growth under Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Rehman SU; Ohno T
    Plants (Basel); 2022 Jun; 11(11):. PubMed ID: 35684281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress.
    Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress.
    Li X; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K; Yamaguchi T; Sunohara Y; Matsumoto H; Komatsu S
    J Proteomics; 2018 Jun; 181():238-248. PubMed ID: 29704570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic and Biological Analyses Reveal the Effect on Growth under Flooding Stress of Chickpea Irradiated with Millimeter Waves.
    Komatsu S; Maruyama J; Furuya T; Yin X; Yamaguchi H; Hitachi K; Miyashita N; Tsuchida K; Tani M
    J Proteome Res; 2021 Oct; 20(10):4718-4727. PubMed ID: 34455783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean.
    Zhong Z; Kobayashi T; Zhu W; Imai H; Zhao R; Ohno T; Rehman SU; Uemura M; Tian J; Komatsu S
    J Proteomics; 2020 Jun; 221():103781. PubMed ID: 32294531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of the promotive effect of plant-derived smoke on plant growth of chickpea.
    Rehman A; Rehman SU; Khatoon A; Qasim M; Itoh T; Iwasaki Y; Wang X; Sunohara Y; Matsumoto H; Komatsu S
    J Proteomics; 2018 Mar; 176():56-70. PubMed ID: 29391210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular Proteomics to Understand Promotive Effect of Plant-Derived Smoke Solution on Soybean Root.
    Murashita Y; Nishiuchi T; Rehman SU; Komatsu S
    Proteomes; 2021 Oct; 9(4):. PubMed ID: 34698284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic and Biochemical Analyses of the Mechanism of Tolerance in Mutant Soybean Responding to Flooding Stress.
    Komatsu S; Yamaguchi H; Hitachi K; Tsuchida K; Kono Y; Nishimura M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Responses of Maize Shoot to a Plant Derived Smoke Solution.
    Aslam MM; Rehman S; Khatoon A; Jamil M; Yamaguchi H; Hitachi K; Tsuchida K; Li X; Sunohara Y; Matsumoto H; Komatsu S
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.
    Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smoke produced from plants waste material elicits growth of wheat (
    Iqbal M; Asif S; Ilyas N; Fayyaz-Ul-Hassan ; Raja NI; Hussain M; Ejaz M; Saira H
    Biotechnol Rep (Amst); 2018 Mar; 17():35-44. PubMed ID: 29270367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage.
    Wang W; Du J; Chen L; Zeng Y; Tan X; Shi Q; Pan X; Wu Z; Zeng Y
    BMC Genomics; 2021 Mar; 22(1):176. PubMed ID: 33706696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic study on the effects of silver nanoparticles on soybean under flooding stress.
    Mustafa G; Sakata K; Hossain Z; Komatsu S
    J Proteomics; 2015 Jun; 122():100-18. PubMed ID: 25857275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-free quantitative proteomic approach to identify cotyledon proteins in soybean under flooding stress.
    Kamal AH; Rashid H; Sakata K; Komatsu S
    J Proteomics; 2015 Jan; 112():1-13. PubMed ID: 25201076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches.
    Sarkar A; Rakwal R; Bhushan Agrawal S; Shibato J; Ogawa Y; Yoshida Y; Kumar Agrawal G; Agrawal M
    J Proteome Res; 2010 Sep; 9(9):4565-84. PubMed ID: 20701290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches.
    Kong FJ; Oyanagi A; Komatsu S
    Biochim Biophys Acta; 2010 Jan; 1804(1):124-36. PubMed ID: 19786127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of soybean root exposed to varying sizes of silver nanoparticles under flooding stress.
    Mustafa G; Sakata K; Komatsu S
    J Proteomics; 2016 Oct; 148():113-25. PubMed ID: 27469891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.