BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35684298)

  • 1. Sarcorucinine-D Inhibits Cholinesterases and Calcium Channels: Molecular Dynamics Simulation and In Vitro Mechanistic Investigations.
    Khalid A; Abdalla M; Saeed M; Ghayur MN; Kalauni SK; Albratty M; Alhazmi HA; Mesaik MA; Gilani AH; Ul-Haq Z
    Molecules; 2022 May; 27(11):. PubMed ID: 35684298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinesterase inhibitory and spasmolytic potential of steroidal alkaloids.
    Khalid A; Zaheer-ul-Haq ; Ghayur MN; Feroz F; Atta-ur-Rahman ; Gilani AH; Choudhary MI
    J Steroid Biochem Mol Biol; 2004 Dec; 92(5):477-84. PubMed ID: 15795993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer's disease therapy.
    Choudhary MI; Nawaz SA; Zaheer-ul-Haq ; Azim MK; Ghayur MN; Lodhi MA; Jalil S; Khalid A; Ahmed A; Rode BM; Atta-ur-Rahman ; Gilani AU; Ahmad VU
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1171-7. PubMed ID: 16021692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological and Computational Studies for Dual Cholinesterases Inhibitory Effect of Zerumbone.
    Hwang J; Youn K; Ji Y; Lee S; Lim G; Lee J; Ho CT; Leem SH; Jun M
    Nutrients; 2020 Apr; 12(5):. PubMed ID: 32344943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and structure-activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases.
    Khalid A; Zaheer-ul-Haq ; Anjum S; Khan MR; Atta-ur-Rahman ; Choudhary MI
    Bioorg Med Chem; 2004 May; 12(9):1995-2003. PubMed ID: 15080903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and Computational Analysis Identify Statins as Selective Inhibitors of Human Butyrylcholinesterase.
    Atay MS; Sari S; Bodur E
    Protein J; 2023 Apr; 42(2):104-111. PubMed ID: 36648628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of β-site amyloid precursor protein cleaving enzyme 1 and cholinesterases by pterosins via a specific structure-activity relationship with a strong BBB permeability.
    Jannat S; Balupuri A; Ali MY; Hong SS; Choi CW; Choi YH; Ku JM; Kim WJ; Leem JY; Kim JE; Shrestha AC; Ham HN; Lee KH; Kim DM; Kang NS; Park GH
    Exp Mol Med; 2019 Feb; 51(2):1-18. PubMed ID: 30755593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of methoxy-naphthyl linked N-(1-benzylpiperidine) benzamide as a blood-brain permeable dual inhibitor of acetylcholinesterase and butyrylcholinesterase.
    Abdullaha M; Nuthakki VK; Bharate SB
    Eur J Med Chem; 2020 Dec; 207():112761. PubMed ID: 32942070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors:
    Makhaeva GF; Kovaleva NV; Boltneva NP; Rudakova EV; Lushchekina SV; Astakhova TY; Serkov IV; Proshin AN; Radchenko EV; Palyulin VA; Korabecny J; Soukup O; Bachurin SO; Richardson RJ
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases.
    Sakayanathan P; Loganathan C; Kandasamy S; Ramanna RV; Poomani K; Thayumanavan P
    Int J Biol Macromol; 2019 Nov; 140():1147-1157. PubMed ID: 31442505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of two different cholinesterases by tacrine.
    Ahmed M; Rocha JB; Corrêa M; Mazzanti CM; Zanin RF; Morsch AL; Morsch VM; Schetinger MR
    Chem Biol Interact; 2006 Aug; 162(2):165-71. PubMed ID: 16860785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and molecular docking of dihydroxanthyletin-type coumarins from Angelica decursiva that inhibit cholinesterase and BACE1.
    Ali MY; Seong SH; Jung HA; Jannat S; Choi JS
    Arch Pharm Res; 2018 Jul; 41(7):753-764. PubMed ID: 30047040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-D-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors.
    Bhakta HK; Park CH; Yokozawa T; Min BS; Jung HA; Choi JS
    Arch Pharm Res; 2016 Jun; 39(6):794-805. PubMed ID: 27106028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Binding Pattern of Geraniol with Acetylcholinesterase through In Silico Docking, Molecular Dynamics Simulation, and In Vitro Enzyme Inhibition Kinetics Studies.
    Iqbal D; Khan MS; Waiz M; Rehman MT; Alaidarous M; Jamal A; Alothaim AS; AlAjmi MF; Alshehri BM; Banawas S; Alsaweed M; Madkhali Y; Algarni A; Alsagaby SA; Alturaiki W
    Cells; 2021 Dec; 10(12):. PubMed ID: 34944045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The kinetic and molecular docking analysis of interactions between three V-type nerve agents and four human cholinesterases.
    Li K; Liu Y; Liu Y; Li Q; Guo L; Xie J
    Chem Biol Interact; 2023 Feb; 372():110369. PubMed ID: 36708975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors.
    Cheng ZQ; Zhu KK; Zhang J; Song JL; Muehlmann LA; Jiang CS; Liu CL; Zhang H
    Bioorg Chem; 2019 Mar; 83():277-288. PubMed ID: 30391700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aporphinoid Alkaloids Derivatives as Selective Cholinesterases Inhibitors: Biological Evaluation and Docking Study.
    Cavallaro V; Murray AP; Pungitore CR; Gutiérrez LJ
    Mol Inform; 2020 Nov; 39(11):e1900125. PubMed ID: 32048433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases.
    Jung HA; Ali MY; Jung HJ; Jeong HO; Chung HY; Choi JS
    J Ethnopharmacol; 2016 Sep; 191():152-160. PubMed ID: 27321278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.