BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35684302)

  • 1. An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes.
    Kurasiak-Popowska D; Graczyk M; Przybylska-Balcerek A; Stuper-Szablewska K; Szwajkowska-Michałek L
    Molecules; 2022 May; 27(11):. PubMed ID: 35684302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Winter camelina seeds as a raw material for the production of erucic acid-free oil.
    Kurasiak-Popowska D; Graczyk M; Stuper-Szablewska K
    Food Chem; 2020 Nov; 330():127265. PubMed ID: 32540525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping quantitative trait loci for seed traits in Camelina sativa.
    King K; Li H; Kang J; Lu C
    Theor Appl Genet; 2019 Sep; 132(9):2567-2577. PubMed ID: 31177293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytomolecular analysis of mutants, breeding lines, and varieties of camelina (Camelina sativa L. Crantz).
    Kwiatek MT; Drozdowska Z; Kurasiak-Popowska D; Noweiska A; Nawracała J
    J Appl Genet; 2021 May; 62(2):199-205. PubMed ID: 33409934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenolic profiles and antioxidant activity of defatted camelina and sophia seeds.
    Rahman MJ; Costa de Camargo A; Shahidi F
    Food Chem; 2018 Feb; 240():917-925. PubMed ID: 28946362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of erucic acid biosynthesis in Camelina (Camelina sativa) by antisense technology.
    Bashiri H; Kahrizi D; Salmanian AH; Rahnama H; Azadi P
    Cell Mol Biol (Noisy-le-grand); 2023 Jul; 69(7):212-217. PubMed ID: 37715377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camelina sativa, an oilseed at the nexus between model system and commercial crop.
    Malik MR; Tang J; Sharma N; Burkitt C; Ji Y; Mykytyshyn M; Bohmert-Tatarev K; Peoples O; Snell KD
    Plant Cell Rep; 2018 Oct; 37(10):1367-1381. PubMed ID: 29881973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of cDNAs from larkspur (Consolida ajacis) for increased synthesis of gondoic acid (cis-11 eicosenoic acid) and its positional redistribution in seed triacylglycerol of Camelina sativa.
    Sarvas C; Puttick D; Forseille L; Cram D; Smith MA
    Planta; 2021 Jul; 254(2):32. PubMed ID: 34287699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.
    Park W; Feng Y; Kim H; Suh MC; Ahn SJ
    Plant Cell Rep; 2015 Sep; 34(9):1489-98. PubMed ID: 25972262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa.
    Ozseyhan ME; Kang J; Mu X; Lu C
    Plant Physiol Biochem; 2018 Feb; 123():1-7. PubMed ID: 29216494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Sprouting on the Phenolic Compounds, Glucosinolates, and Antioxidant Activity of Five
    Bravi E; Falcinelli B; Mallia G; Marconi O; Royo-Esnal A; Benincasa P
    Antioxidants (Basel); 2023 Jul; 12(8):. PubMed ID: 37627490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.
    Bansal S; Durrett TP
    Biochimie; 2016 Jan; 120():9-16. PubMed ID: 26107412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty Acid Composition of
    Razmaitė V; Pileckas V; Bliznikas S; Šiukščius A
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic analysis of freezing tolerance in camelina [Camelina sativa (L.) Crantz] by diallel cross of winter and spring biotypes.
    Soorni J; Kazemitabar SK; Kahrizi D; Dehestani A; Bagheri N
    Planta; 2021 Jan; 253(1):9. PubMed ID: 33389162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa.
    Lyzenga WJ; Harrington M; Bekkaoui D; Wigness M; Hegedus DD; Rozwadowski KL
    BMC Plant Biol; 2019 Jul; 19(1):292. PubMed ID: 31272394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical Properties of Bioactive Compounds in the Oil from Polish Varieties of Camelina sativa Cultivated in 2019-2022.
    Przybylska-Balcerek A; Kurasiak-Popowska D; Graczyk M; Szczepańska-Alvarez A; Rzyska K; Stuper-Szablewska K
    Chem Biodivers; 2024 May; ():e202400523. PubMed ID: 38814629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes.
    Boutet S; Barreda L; Perreau F; Totozafy JC; Mauve C; Gakière B; Delannoy E; Martin-Magniette ML; Monti A; Lepiniec L; Zanetti F; Corso M
    Plant J; 2022 Apr; 110(1):147-165. PubMed ID: 34997644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.