These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 35684620)
41. Transformer-based deep learning networks for fault detection, classification, and location prediction in transmission lines. Baadji B; Belagoune S; Boudjellal SE Network; 2024 Sep; ():1-21. PubMed ID: 39224075 [TBL] [Abstract][Full Text] [Related]
42. Intelligent Fault Diagnosis and Forecast of Time-Varying Bearing Based on Deep Learning VMD-DenseNet. Lin SL Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833542 [TBL] [Abstract][Full Text] [Related]
43. Sparse Wasserstein stationary subspace analysis for fault detection and diagnosis of nonstationary industrial processes. Huang K; Li J; Wu D; Liu Y; Yang C; Gui W ISA Trans; 2024 Aug; 151():285-295. PubMed ID: 38845235 [TBL] [Abstract][Full Text] [Related]
44. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform. Yu X; Ding E; Chen C; Liu X; Li L Sensors (Basel); 2015 Nov; 15(11):27869-93. PubMed ID: 26540059 [TBL] [Abstract][Full Text] [Related]
45. Deep-Learning-Based Methodology for Fault Diagnosis in Electromechanical Systems. Arellano-Espitia F; Delgado-Prieto M; Martinez-Viol V; Saucedo-Dorantes JJ; Osornio-Rios RA Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708574 [TBL] [Abstract][Full Text] [Related]
46. A nonlinear quality-related fault detection approach based on modified kernel partial least squares. Jiao J; Zhao N; Wang G; Yin S ISA Trans; 2017 Jan; 66():275-283. PubMed ID: 27817839 [TBL] [Abstract][Full Text] [Related]
47. A Novel Cross-Sensor Transfer Diagnosis Method with Local Attention Mechanism: Applied in a Reciprocating Pump. Wang C; Chen L; Zhang Y; Zhang L; Tan T Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687888 [TBL] [Abstract][Full Text] [Related]
48. Deep residual learning-based fault diagnosis method for rotating machinery. Zhang W; Li X; Ding Q ISA Trans; 2019 Dec; 95():295-305. PubMed ID: 30598323 [TBL] [Abstract][Full Text] [Related]
49. Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Li C; Sánchez RV; Zurita G; Cerrada M; Cabrera D Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322273 [TBL] [Abstract][Full Text] [Related]
50. Fault Diagnosis of Ball Screw in Industrial Robots Using Non-Stationary Motor Current Signals. Yang Q; Li X; Wang Y; Ainapure A; Lee J Procedia Manuf; 2020; 48():1102-1108. PubMed ID: 36466192 [TBL] [Abstract][Full Text] [Related]
51. Contrastive Learning for Fault Detection and Diagnostics in the Context of Changing Operating Conditions and Novel Fault Types. Rombach K; Michau G; Fink O Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34065164 [TBL] [Abstract][Full Text] [Related]
52. A Multimodal Feature Fusion-Based Deep Learning Method for Online Fault Diagnosis of Rotating Machinery. Zhou F; Hu P; Yang S; Wen C Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340412 [TBL] [Abstract][Full Text] [Related]
53. A Two-Stage, Intelligent Bearing-Fault-Diagnosis Method Using Order-Tracking and a One-Dimensional Convolutional Neural Network with Variable Speeds. Ji M; Peng G; He J; Liu S; Chen Z; Li S Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498161 [TBL] [Abstract][Full Text] [Related]
54. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis. Sohaib M; Kim CH; Kim JM Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908 [TBL] [Abstract][Full Text] [Related]
55. Variable-weighted FDA combined with t-SNE and multiple extreme learning machines for visual industrial process monitoring. Lu W; Yan X ISA Trans; 2022 Mar; 122():163-171. PubMed ID: 33972079 [TBL] [Abstract][Full Text] [Related]
56. A rolling bearing fault detection method based on compressed sensing and a neural network. Lu L; Fei JY; Yu L; Yuan Y Math Biosci Eng; 2020 Sep; 17(5):5864-5882. PubMed ID: 33120580 [TBL] [Abstract][Full Text] [Related]
57. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals. Tang G; Hou W; Wang H; Luo G; Ma J Sensors (Basel); 2015 Oct; 15(10):25648-62. PubMed ID: 26473858 [TBL] [Abstract][Full Text] [Related]
58. Semi-supervised weighted kernel clustering based on gravitational search for fault diagnosis. Li C; Zhou J ISA Trans; 2014 Sep; 53(5):1534-43. PubMed ID: 24981891 [TBL] [Abstract][Full Text] [Related]
59. Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition. Cheng Y; Zhou B; Lu C; Yang C Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772943 [TBL] [Abstract][Full Text] [Related]
60. Wide Residual Relation Network-Based Intelligent Fault Diagnosis of Rotating Machines with Small Samples. Chen Z; Wang Y; Wu J; Deng C; Jiang W Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]